File size: 3,554 Bytes
804f188
caf0600
846fabc
44ebdab
 
 
 
a9b1817
 
 
 
846fabc
 
 
 
 
 
44ebdab
846fabc
 
034cc6f
 
 
846fabc
44ebdab
846fabc
caf0600
846fabc
 
 
 
 
 
 
44ebdab
846fabc
 
 
 
44ebdab
846fabc
 
 
 
44ebdab
846fabc
 
 
 
44ebdab
846fabc
 
 
 
44ebdab
846fabc
 
 
 
 
 
44ebdab
846fabc
 
44ebdab
846fabc
 
 
 
 
 
 
 
 
 
 
 
 
44ebdab
846fabc
bb02219
846fabc
44ebdab
23cd40c
 
f4e427b
bb02219
f37275f
23cd40c
 
 
 
44ebdab
 
 
846fabc
44ebdab
846fabc
 
 
 
 
 
 
 
89e5ee7
e306b09
 
 
 
 
 
 
 
a9b1817
804f188
e306b09
44ebdab
e5e5614
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
PATH = 'harpomaxx/deeplili' #stable diffusion 1.5
from PIL import Image
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import argparse

#from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler


from tqdm.auto import tqdm
import random
import gradio as gr

def generate_images(prompt, guidance_scale, n_samples, num_inference_steps):
    seeds = [random.randint(1, 10000) for _ in range(n_samples)]
    images = []
    for seed in tqdm(seeds):
        torch.manual_seed(seed)
        image = pipe(prompt, num_inference_steps=num_inference_steps,guidance_scale=guidance_scale).images[0]
        images.append(image)        
    return images[0]

def gr_generate_images(prompt: str, num_images = 1, num_inference = 20, guidance_scale = 8 ):
    prompt = prompt + "sks style"
    images = generate_images(prompt, guidance_scale, num_images, num_inference)
    return images

with gr.Blocks() as demo:
    examples = [
    [
        'A black and white cute character on top of a hill',
        1,
        30
    ],
    [
        'Bubbles and mountains in the sky',
        1,
        20
    ],
    [
        'A tree with multiple eyes and a small flower muted colors',
        1,
        20
    ],
    [
        "3d character on top of a hill",
        1,
        20
    ],
    [
        "a poster of a large forest with black and white characters",
        1,
        20
    ],
    ]
    gr.Markdown(
    """
    <img src="https://github.com/harpomaxx/DeepLili/raw/main/images/lilifiallo/660.png" width="150" height="150">

    # #DeepLili v0.5b

    ## Enter your prompt and generate a work of art in the style of Lili's Toy Art paintings.
    ## (English, Spanish)
    """
    )

    with gr.Column(variant="panel"):
        with gr.Row(variant="compact"):
            text = gr.Textbox(
                label="Enter your prompt",
                show_label=False,
                max_lines=2,
                placeholder="a white and black drawing of  a cute character on top of a house with a little animal"
            ).style(
                container=False,
            )

        with gr.Row(variant="compact"):
         
            btn = gr.Button("Generate image").style(full_width=False)

        gallery = gr.Image(
            label="Generated image", 
            type='pil',
            show_label = False
        ).style(
            width="50%",  # Use the full view width
            height="50%",  # Use the full view height
            object_fit="scale-down"  # Maintain aspect ratio without cropping
        )
    num_images_slider = 1
    num_inference_steps_slider = 20
    guidance_slider = 8

    btn.click(gr_generate_images, [text], gallery)
    gr.Examples(examples, inputs=[text])
    gr.HTML(
    """
    <h6><a href="https://harpomaxx.github.io/"> harpomaxx </a></h6>
    """
    )

if __name__ == "__main__":
    # Check if CUDA is available
    if torch.cuda.is_available():
        device = "cuda"
        dtype = torch.float16  # Use float16 for GPU to save memory
    else:
        device = "cpu"
        dtype = torch.float32  # CPU does not support float16, use float32 instead


    dpm = DPMSolverMultistepScheduler.from_pretrained(PATH, subfolder="scheduler")
    pipe = StableDiffusionPipeline.from_pretrained(PATH,torch_dtype=dtype, scheduler=dpm).to(device)
    
    demo.queue(concurrency_count=2,
            ).launch()