Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,497 +1,3 @@
|
|
| 1 |
-
# import gradio as gr
|
| 2 |
-
# import os
|
| 3 |
-
# from mistralai.client import MistralClient
|
| 4 |
-
# from mistralai.models.chat_completion import ChatMessage
|
| 5 |
-
|
| 6 |
-
# # Ensure the environment variable for the API key is set
|
| 7 |
-
# api_key = os.getenv("MISTRAL_API_KEY")
|
| 8 |
-
# if not api_key:
|
| 9 |
-
# raise ValueError("MISTRAL_API_KEY environment variable not set")
|
| 10 |
-
|
| 11 |
-
# model = "mistral-tiny"
|
| 12 |
-
# client = MistralClient(api_key=api_key)
|
| 13 |
-
|
| 14 |
-
# def generate_goals(input_var):
|
| 15 |
-
# messages = [
|
| 16 |
-
# ChatMessage(role="user", content=f"Generate 10 specific, industry relevant goals for {input_var} using Python and Pandas. Each goal should include a brief name and a one-sentence description of the task or skill. Focus on practical applications in educational assessment, covering areas such as data processing, statistical analysis, visualization, and advanced techniques")
|
| 17 |
-
# ]
|
| 18 |
-
|
| 19 |
-
# try:
|
| 20 |
-
# response = client.chat(model=model, messages=messages)
|
| 21 |
-
# content = response.choices[0].message.content
|
| 22 |
-
# return content
|
| 23 |
-
# except Exception as e:
|
| 24 |
-
# return f"An error occurred: {str(e)}"
|
| 25 |
-
|
| 26 |
-
# # HTML content
|
| 27 |
-
# html_content = """
|
| 28 |
-
# <!DOCTYPE html>
|
| 29 |
-
# <html lang="en">
|
| 30 |
-
# <head>
|
| 31 |
-
# <meta charset="UTF-8">
|
| 32 |
-
# <meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 33 |
-
# <title>Comprehensive Exam Data Analysis with Pandas - 30 Industry Goals with Connections</title>
|
| 34 |
-
# <script src="https://cdnjs.cloudflare.com/ajax/libs/d3/7.8.5/d3.min.js"></script>
|
| 35 |
-
# <style>
|
| 36 |
-
# body { font-family: Arial, sans-serif; margin: 20px; }
|
| 37 |
-
# #goalSpace { border: 1px solid #ccc; margin-bottom: 20px; }
|
| 38 |
-
# .goal { cursor: pointer; }
|
| 39 |
-
# #info { margin-top: 20px; font-weight: bold; }
|
| 40 |
-
# #selectedGoal { margin-top: 10px; padding: 10px; border: 1px solid #ccc; background-color: #f0f0f0; }
|
| 41 |
-
# #hoverInfo {
|
| 42 |
-
# position: absolute;
|
| 43 |
-
# padding: 10px;
|
| 44 |
-
# background-color: rgba(255, 255, 255, 0.9);
|
| 45 |
-
# border: 1px solid #ccc;
|
| 46 |
-
# border-radius: 5px;
|
| 47 |
-
# font-size: 14px;
|
| 48 |
-
# max-width: 300px;
|
| 49 |
-
# display: none;
|
| 50 |
-
# }
|
| 51 |
-
# #responseBox {
|
| 52 |
-
# margin-top: 20px;
|
| 53 |
-
# padding: 10px;
|
| 54 |
-
# border: 1px solid #ccc;
|
| 55 |
-
# background-color: #e0f7fa;
|
| 56 |
-
# }
|
| 57 |
-
# </style>
|
| 58 |
-
# </head>
|
| 59 |
-
# <body>
|
| 60 |
-
# <h1>Comprehensive Exam Data Analysis with Pandas - 30 Industry Goals with Connections</h1>
|
| 61 |
-
# <div id="goalSpace"></div>
|
| 62 |
-
# <div id="info"></div>
|
| 63 |
-
# <div id="selectedGoal"></div>
|
| 64 |
-
# <div id="hoverInfo"></div>
|
| 65 |
-
# <div id="responseBox"></div>
|
| 66 |
-
|
| 67 |
-
# <script>
|
| 68 |
-
# const width = 1200;
|
| 69 |
-
# const height = 800;
|
| 70 |
-
# // Define the goals and connections data
|
| 71 |
-
# const goals = [
|
| 72 |
-
# { id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
|
| 73 |
-
# { id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
|
| 74 |
-
# { id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
|
| 75 |
-
# { id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
|
| 76 |
-
# { id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
|
| 77 |
-
# { id: 6, x: 200, y: 500, name: "Data Filtering", description: "Implement advanced filtering techniques to segment exam data based on various criteria (e.g., demographic info, score ranges) using boolean indexing and query() method in Pandas." },
|
| 78 |
-
# { id: 7, x: 300, y: 600, name: "Reporting Automation", description: "Develop automated reporting systems that use Pandas groupby() and agg() functions to generate summary statistics and performance reports for different exam cohorts." },
|
| 79 |
-
# { id: 8, x: 400, y: 500, name: "Data Visualization", description: "Create interactive dashboards for exam data visualization using Pandas with Plotly or Bokeh, allowing stakeholders to explore results dynamically." },
|
| 80 |
-
# { id: 9, x: 500, y: 600, name: "Time Series Analysis", description: "Implement time series analysis techniques using Pandas datetime functionality to track and forecast exam performance trends over multiple test administrations." },
|
| 81 |
-
# { id: 10, x: 300, y: 400, name: "Data Integration", description: "Develop processes to merge exam data with other relevant datasets (e.g., student information systems, learning management systems) using Pandas merge() and join() operations." },
|
| 82 |
-
# { id: 11, x: 600, y: 300, name: "Performance Optimization", description: "Improve the efficiency of Pandas operations on large exam datasets by utilizing techniques like chunking, multiprocessing, and query optimization." },
|
| 83 |
-
# { id: 12, x: 700, y: 400, name: "Machine Learning Integration", description: "Integrate machine learning models with Pandas for predictive analytics, such as predicting exam success or identifying at-risk students based on historical data." },
|
| 84 |
-
# { id: 13, x: 800, y: 500, name: "Custom Indexing", description: "Implement custom indexing strategies in Pandas to efficiently handle hierarchical exam data structures and improve data access patterns." },
|
| 85 |
-
# { id: 14, x: 900, y: 400, name: "Data Anonymization", description: "Develop Pandas-based workflows to anonymize sensitive exam data, ensuring compliance with privacy regulations while maintaining data utility for analysis." },
|
| 86 |
-
# { id: 15, x: 1000, y: 300, name: "Exam Item Analysis", description: "Create specialized functions using Pandas to perform detailed item analysis, including distractor analysis and reliability calculations for individual exam questions." },
|
| 87 |
-
# { id: 16, x: 600, y: 500, name: "Longitudinal Analysis", description: "Implement Pandas-based methods for tracking student performance across multiple exams over time, identifying learning trends and progress patterns." },
|
| 88 |
-
# { id: 17, x: 700, y: 600, name: "Adaptive Testing Analysis", description: "Develop analysis pipelines using Pandas to evaluate and optimize adaptive testing algorithms, including item selection strategies and scoring methods." },
|
| 89 |
-
# { id: 18, x: 800, y: 700, name: "Exam Equating", description: "Create Pandas workflows to perform exam equating, ensuring comparability of scores across different versions or administrations of an exam." },
|
| 90 |
-
# { id: 19, x: 900, y: 600, name: "Response Time Analysis", description: "Utilize Pandas to analyze exam response times, identifying patterns that may indicate guessing, test-taking strategies, or item difficulty." },
|
| 91 |
-
# { id: 20, x: 1000, y: 500, name: "Collaborative Filtering", description: "Implement collaborative filtering techniques using Pandas to recommend study materials or practice questions based on exam performance patterns." },
|
| 92 |
-
# { id: 21, x: 400, y: 700, name: "Exam Fraud Detection", description: "Develop anomaly detection algorithms using Pandas to identify potential exam fraud or unusual response patterns in large-scale testing programs." },
|
| 93 |
-
# { id: 22, x: 500, y: 800, name: "Standard Setting", description: "Create Pandas-based tools to assist in standard setting processes, analyzing expert judgments and examinee data to establish performance standards." },
|
| 94 |
-
# { id: 23, x: 600, y: 700, name: "Automated Reporting", description: "Implement automated report generation using Pandas and libraries like Jinja2 to create customized, data-driven exam reports for various stakeholders." },
|
| 95 |
-
# { id: 24, x: 700, y: 800, name: "Cross-validation", description: "Develop cross-validation frameworks using Pandas to assess the reliability and generalizability of predictive models in educational assessment contexts." },
|
| 96 |
-
# { id: 25, x: 800, y: 300, name: "API Integration", description: "Create Pandas-based interfaces to integrate exam data analysis workflows with external APIs, facilitating real-time data exchange and reporting." },
|
| 97 |
-
# { id: 26, x: 900, y: 200, name: "Natural Language Processing", description: "Implement NLP techniques using Pandas and libraries like NLTK to analyze free-text responses in exams, enabling automated scoring and content analysis." },
|
| 98 |
-
# { id: 27, x: 1000, y: 100, name: "Exam Blueprint Analysis", description: "Develop Pandas workflows to analyze exam blueprints, ensuring content coverage and alignment with learning objectives across multiple test forms." },
|
| 99 |
-
# { id: 28, x: 100, y: 600, name: "Differential Item Functioning", description: "Implement statistical methods using Pandas to detect and analyze differential item functioning (DIF) in exams, ensuring fairness across different demographic groups." },
|
| 100 |
-
# { id: 29, x: 200, y: 700, name: "Automated Feedback Generation", description: "Create Pandas-based systems to generate personalized feedback for test-takers based on their exam performance and identified areas for improvement." },
|
| 101 |
-
# { id: 30, x: 300, y: 800, name: "Exam Security Analysis", description: "Develop analytical tools using Pandas to assess and enhance exam security, including analysis of item exposure rates and detection of potential security breaches." }
|
| 102 |
-
# ];
|
| 103 |
-
# const connections = [
|
| 104 |
-
# { source: 1, target: 2 },
|
| 105 |
-
# { source: 2, target: 3 },
|
| 106 |
-
# { source: 3, target: 4 },
|
| 107 |
-
# { source: 4, target: 5 },
|
| 108 |
-
# { source: 5, target: 7 },
|
| 109 |
-
# { source: 6, target: 7 },
|
| 110 |
-
# { source: 7, target: 8 },
|
| 111 |
-
# { source: 8, target: 9 },
|
| 112 |
-
# { source: 9, target: 16 },
|
| 113 |
-
# { source: 10, target: 13 },
|
| 114 |
-
# { source: 11, target: 12 },
|
| 115 |
-
# { source: 12, target: 20 },
|
| 116 |
-
# { source: 13, target: 16 },
|
| 117 |
-
# { source: 14, target: 21 },
|
| 118 |
-
# { source: 15, target: 17 },
|
| 119 |
-
# { source: 16, target: 18 },
|
| 120 |
-
# { source: 17, target: 19 },
|
| 121 |
-
# { source: 18, target: 22 },
|
| 122 |
-
# { source: 19, target: 21 },
|
| 123 |
-
# { source: 20, target: 29 },
|
| 124 |
-
# { source: 21, target: 30 },
|
| 125 |
-
# { source: 22, target: 23 },
|
| 126 |
-
# { source: 23, target: 25 },
|
| 127 |
-
# { source: 24, target: 12 },
|
| 128 |
-
# { source: 25, target: 23 },
|
| 129 |
-
# { source: 26, target: 15 },
|
| 130 |
-
# { source: 27, target: 15 },
|
| 131 |
-
# { source: 28, target: 22 },
|
| 132 |
-
# { source: 29, target: 23 },
|
| 133 |
-
# { source: 30, target: 21 },
|
| 134 |
-
# // Additional connections for more interconnectivity
|
| 135 |
-
# { source: 1, target: 10 },
|
| 136 |
-
# { source: 2, target: 6 },
|
| 137 |
-
# { source: 3, target: 13 },
|
| 138 |
-
# { source: 4, target: 15 },
|
| 139 |
-
# { source: 5, target: 28 },
|
| 140 |
-
# { source: 8, target: 23 },
|
| 141 |
-
# { source: 11, target: 25 },
|
| 142 |
-
# { source: 14, target: 30 },
|
| 143 |
-
# { source: 24, target: 17 },
|
| 144 |
-
# { source: 26, target: 29 }
|
| 145 |
-
# ];
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
# // Create the SVG container for the goals and connections
|
| 149 |
-
# const svg = d3.select("#goalSpace")
|
| 150 |
-
# .append("svg")
|
| 151 |
-
# .attr("width", width)
|
| 152 |
-
# .attr("height", height);
|
| 153 |
-
|
| 154 |
-
# // Draw connections between goals
|
| 155 |
-
# const links = svg.selectAll("line")
|
| 156 |
-
# .data(connections)
|
| 157 |
-
# .enter()
|
| 158 |
-
# .append("line")
|
| 159 |
-
# .attr("x1", d => goals.find(g => g.id === d.source).x)
|
| 160 |
-
# .attr("y1", d => goals.find(g => g.id === d.source).y)
|
| 161 |
-
# .attr("x2", d => goals.find(g => g.id === d.target).x)
|
| 162 |
-
# .attr("y2", d => goals.find(g => g.id === d.target).y)
|
| 163 |
-
# .attr("stroke", "#999")
|
| 164 |
-
# .attr("stroke-width", 1)
|
| 165 |
-
# .attr("stroke-opacity", 0.6);
|
| 166 |
-
|
| 167 |
-
# // Draw goal nodes
|
| 168 |
-
# const goalNodes = svg.selectAll("circle")
|
| 169 |
-
# .data(goals)
|
| 170 |
-
# .enter()
|
| 171 |
-
# .append("circle")
|
| 172 |
-
# .attr("cx", d => d.x)
|
| 173 |
-
# .attr("cy", d => d.y)
|
| 174 |
-
# .attr("r", 10)
|
| 175 |
-
# .attr("fill", d => {
|
| 176 |
-
# if (d.id <= 10) return "blue";
|
| 177 |
-
# if (d.id <= 20) return "green";
|
| 178 |
-
# return "orange";
|
| 179 |
-
# })
|
| 180 |
-
# .attr("class", "goal");
|
| 181 |
-
|
| 182 |
-
# // Add labels to the goals
|
| 183 |
-
# const goalLabels = svg.selectAll("text")
|
| 184 |
-
# .data(goals)
|
| 185 |
-
# .enter()
|
| 186 |
-
# .append("text")
|
| 187 |
-
# .attr("x", d => d.x + 15)
|
| 188 |
-
# .attr("y", d => d.y)
|
| 189 |
-
# .text(d => d.name)
|
| 190 |
-
# .attr("font-size", "12px");
|
| 191 |
-
|
| 192 |
-
# // Hover info box
|
| 193 |
-
# const hoverInfo = d3.select("#hoverInfo");
|
| 194 |
-
|
| 195 |
-
# // Add hover effects on goal nodes
|
| 196 |
-
# goalNodes.on("mouseover", function(event, d) {
|
| 197 |
-
# d3.select(this).attr("r", 15);
|
| 198 |
-
# hoverInfo.style("display", "block")
|
| 199 |
-
# .style("left", (event.pageX + 10) + "px")
|
| 200 |
-
# .style("top", (event.pageY - 10) + "px")
|
| 201 |
-
# .html(`<strong>${d.name}</strong><br>${d.description}`);
|
| 202 |
-
# }).on("mouseout", function() {
|
| 203 |
-
# d3.select(this).attr("r", 10);
|
| 204 |
-
# hoverInfo.style("display", "none");
|
| 205 |
-
# });
|
| 206 |
-
|
| 207 |
-
# // Handle click event on goal nodes
|
| 208 |
-
# goalNodes.on("click", async function(event, d) {
|
| 209 |
-
# updateSelectedGoalInfo(d);
|
| 210 |
-
|
| 211 |
-
# try {
|
| 212 |
-
# const response = await fetch('generate_goals', {
|
| 213 |
-
# method: 'POST',
|
| 214 |
-
# headers: {
|
| 215 |
-
# 'Content-Type': 'application/json',
|
| 216 |
-
# },
|
| 217 |
-
# body: JSON.stringify({ input_var: d.name })
|
| 218 |
-
# });
|
| 219 |
-
|
| 220 |
-
# if (!response.ok) {
|
| 221 |
-
# throw new Error(`HTTP error! status: ${response.status}`);
|
| 222 |
-
# }
|
| 223 |
-
|
| 224 |
-
# const data = await response.json();
|
| 225 |
-
# displayResponse(data.content);
|
| 226 |
-
# } catch (error) {
|
| 227 |
-
# console.error("There was an error fetching the response:", error);
|
| 228 |
-
# displayResponse("An error occurred while generating the response.");
|
| 229 |
-
# }
|
| 230 |
-
# });
|
| 231 |
-
|
| 232 |
-
# // Function to update selected goal information
|
| 233 |
-
# function updateSelectedGoalInfo(goal) {
|
| 234 |
-
# const selectedGoalDiv = d3.select("#selectedGoal");
|
| 235 |
-
# selectedGoalDiv.html(`
|
| 236 |
-
# <h3>${goal.name}</h3>
|
| 237 |
-
# <p>${goal.description}</p>
|
| 238 |
-
# `);
|
| 239 |
-
# }
|
| 240 |
-
|
| 241 |
-
# // Function to display the response from the server
|
| 242 |
-
# function displayResponse(content) {
|
| 243 |
-
# const responseBox = d3.select("#responseBox");
|
| 244 |
-
# responseBox.html(`
|
| 245 |
-
# <h2>Response</h2>
|
| 246 |
-
# <p>${content}</p>
|
| 247 |
-
# `);
|
| 248 |
-
# }
|
| 249 |
-
|
| 250 |
-
# // Handle mouse move event to highlight the closest goal
|
| 251 |
-
# svg.on("mousemove", function(event) {
|
| 252 |
-
# const [x, y] = d3.pointer(event);
|
| 253 |
-
# const closest = findClosestGoal(x, y);
|
| 254 |
-
# highlightClosestGoal(closest);
|
| 255 |
-
# });
|
| 256 |
-
|
| 257 |
-
# // Function to find the closest goal to the mouse pointer
|
| 258 |
-
# function findClosestGoal(x, y) {
|
| 259 |
-
# return goals.reduce((closest, goal) => {
|
| 260 |
-
# const distance = Math.sqrt(Math.pow(goal.x - x, 2) + Math.pow(goal.y - y, 2));
|
| 261 |
-
# return distance < closest.distance ? { goal, distance } : closest;
|
| 262 |
-
# }, { goal: null, distance: Infinity }).goal;
|
| 263 |
-
# }
|
| 264 |
-
|
| 265 |
-
# // Function to highlight the closest goal
|
| 266 |
-
# function highlightClosestGoal(goal) {
|
| 267 |
-
# d3.select("#info").html(`Closest goal: ${goal.name}`);
|
| 268 |
-
# }
|
| 269 |
-
# </script>
|
| 270 |
-
# </body>
|
| 271 |
-
# </html>
|
| 272 |
-
# """
|
| 273 |
-
|
| 274 |
-
# # Gradio interface
|
| 275 |
-
# iface = gr.Interface(
|
| 276 |
-
# fn=generate_goals,
|
| 277 |
-
# inputs=gr.Textbox(label="Goal Name"),
|
| 278 |
-
# outputs=gr.Textbox(label="Generated Goals"),
|
| 279 |
-
# title="Exam Data Analysis Goals Generator",
|
| 280 |
-
# description="Click on a goal in the visualization to generate related goals.",
|
| 281 |
-
# allow_flagging="never",
|
| 282 |
-
# theme="default",
|
| 283 |
-
# css=html_content
|
| 284 |
-
# )
|
| 285 |
-
|
| 286 |
-
# if __name__ == "__main__":
|
| 287 |
-
# iface.launch()
|
| 288 |
-
# from flask import Flask, request, jsonify, render_template_string
|
| 289 |
-
# import os
|
| 290 |
-
# from mistralai.client import MistralClient
|
| 291 |
-
# from mistralai.models.chat_completion import ChatMessage
|
| 292 |
-
|
| 293 |
-
# app = Flask(__name__)
|
| 294 |
-
|
| 295 |
-
# # Mistral AI setup
|
| 296 |
-
# api_key = os.getenv("MISTRAL_API_KEY")
|
| 297 |
-
# if not api_key:
|
| 298 |
-
# raise ValueError("MISTRAL_API_KEY environment variable not set")
|
| 299 |
-
|
| 300 |
-
# model = "mistral-tiny"
|
| 301 |
-
# client = MistralClient(api_key=api_key)
|
| 302 |
-
|
| 303 |
-
# def generate_goals(input_var):
|
| 304 |
-
# messages = [
|
| 305 |
-
# ChatMessage(role="user", content=f"Generate 5 specific, industry relevant goals for {input_var} using Python and Pandas in exam data analysis. Each goal should include a brief name and a one-sentence description of the task or skill.")
|
| 306 |
-
# ]
|
| 307 |
-
# try:
|
| 308 |
-
# response = client.chat(model=model, messages=messages)
|
| 309 |
-
# return response.choices[0].message.content
|
| 310 |
-
# except Exception as e:
|
| 311 |
-
# return f"An error occurred: {str(e)}"
|
| 312 |
-
|
| 313 |
-
# html_content = """
|
| 314 |
-
# <!DOCTYPE html>
|
| 315 |
-
# <html lang="en">
|
| 316 |
-
# <head>
|
| 317 |
-
# <meta charset="UTF-8">
|
| 318 |
-
# <meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 319 |
-
# <title>Exam Data Analysis Goals Generator</title>
|
| 320 |
-
# <script src="https://d3js.org/d3.v7.min.js"></script>
|
| 321 |
-
# <style>
|
| 322 |
-
# #visualization { width: 100%; height: 600px; border: 1px solid #ccc; }
|
| 323 |
-
# #generatedGoals { margin-top: 20px; padding: 10px; border: 1px solid #ccc; }
|
| 324 |
-
# </style>
|
| 325 |
-
# </head>
|
| 326 |
-
# <body>
|
| 327 |
-
# <h1>Exam Data Analysis Goals Generator</h1>
|
| 328 |
-
# <div id="visualization"></div>
|
| 329 |
-
# <div id="generatedGoals"></div>
|
| 330 |
-
# <script>
|
| 331 |
-
# const width = 1200;
|
| 332 |
-
# const height = 800;
|
| 333 |
-
# const goals = [
|
| 334 |
-
# { id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
|
| 335 |
-
# { id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
|
| 336 |
-
# { id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
|
| 337 |
-
# { id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
|
| 338 |
-
# { id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
|
| 339 |
-
# { id: 6, x: 200, y: 500, name: "Data Filtering", description: "Implement advanced filtering techniques to segment exam data based on various criteria (e.g., demographic info, score ranges) using boolean indexing and query() method in Pandas." },
|
| 340 |
-
# { id: 7, x: 300, y: 600, name: "Reporting Automation", description: "Develop automated reporting systems that use Pandas groupby() and agg() functions to generate summary statistics and performance reports for different exam cohorts." },
|
| 341 |
-
# { id: 8, x: 400, y: 500, name: "Data Visualization", description: "Create interactive dashboards for exam data visualization using Pandas with Plotly or Bokeh, allowing stakeholders to explore results dynamically." },
|
| 342 |
-
# { id: 9, x: 500, y: 600, name: "Time Series Analysis", description: "Implement time series analysis techniques using Pandas datetime functionality to track and forecast exam performance trends over multiple test administrations." },
|
| 343 |
-
# { id: 10, x: 300, y: 400, name: "Data Integration", description: "Develop processes to merge exam data with other relevant datasets (e.g., student information systems, learning management systems) using Pandas merge() and join() operations." },
|
| 344 |
-
# { id: 11, x: 600, y: 300, name: "Performance Optimization", description: "Improve the efficiency of Pandas operations on large exam datasets by utilizing techniques like chunking, multiprocessing, and query optimization." },
|
| 345 |
-
# { id: 12, x: 700, y: 400, name: "Machine Learning Integration", description: "Integrate machine learning models with Pandas for predictive analytics, such as predicting exam success or identifying at-risk students based on historical data." },
|
| 346 |
-
# { id: 13, x: 800, y: 500, name: "Custom Indexing", description: "Implement custom indexing strategies in Pandas to efficiently handle hierarchical exam data structures and improve data access patterns." },
|
| 347 |
-
# { id: 14, x: 900, y: 400, name: "Data Anonymization", description: "Develop Pandas-based workflows to anonymize sensitive exam data, ensuring compliance with privacy regulations while maintaining data utility for analysis." },
|
| 348 |
-
# { id: 15, x: 1000, y: 300, name: "Exam Item Analysis", description: "Create specialized functions using Pandas to perform detailed item analysis, including distractor analysis and reliability calculations for individual exam questions." },
|
| 349 |
-
# { id: 16, x: 600, y: 500, name: "Longitudinal Analysis", description: "Implement Pandas-based methods for tracking student performance across multiple exams over time, identifying learning trends and progress patterns." },
|
| 350 |
-
# { id: 17, x: 700, y: 600, name: "Adaptive Testing Analysis", description: "Develop analysis pipelines using Pandas to evaluate and optimize adaptive testing algorithms, including item selection strategies and scoring methods." },
|
| 351 |
-
# { id: 18, x: 800, y: 700, name: "Exam Equating", description: "Create Pandas workflows to perform exam equating, ensuring comparability of scores across different versions or administrations of an exam." },
|
| 352 |
-
# { id: 19, x: 900, y: 600, name: "Response Time Analysis", description: "Utilize Pandas to analyze exam response times, identifying patterns that may indicate guessing, test-taking strategies, or item difficulty." },
|
| 353 |
-
# { id: 20, x: 1000, y: 500, name: "Collaborative Filtering", description: "Implement collaborative filtering techniques using Pandas to recommend study materials or practice questions based on exam performance patterns." },
|
| 354 |
-
# { id: 21, x: 400, y: 700, name: "Exam Fraud Detection", description: "Develop anomaly detection algorithms using Pandas to identify potential exam fraud or unusual response patterns in large-scale testing programs." },
|
| 355 |
-
# { id: 22, x: 500, y: 800, name: "Standard Setting", description: "Create Pandas-based tools to assist in standard setting processes, analyzing expert judgments and examinee data to establish performance standards." },
|
| 356 |
-
# { id: 23, x: 600, y: 700, name: "Automated Reporting", description: "Implement automated report generation using Pandas and libraries like Jinja2 to create customized, data-driven exam reports for various stakeholders." },
|
| 357 |
-
# { id: 24, x: 700, y: 800, name: "Cross-validation", description: "Develop cross-validation frameworks using Pandas to assess the reliability and generalizability of predictive models in educational assessment contexts." },
|
| 358 |
-
# { id: 25, x: 800, y: 300, name: "API Integration", description: "Create Pandas-based interfaces to integrate exam data analysis workflows with external APIs, facilitating real-time data exchange and reporting." },
|
| 359 |
-
# { id: 26, x: 900, y: 200, name: "Natural Language Processing", description: "Implement NLP techniques using Pandas and libraries like NLTK to analyze free-text responses in exams, enabling automated scoring and content analysis." },
|
| 360 |
-
# { id: 27, x: 1000, y: 100, name: "Exam Blueprint Analysis", description: "Develop Pandas workflows to analyze exam blueprints, ensuring content coverage and alignment with learning objectives across multiple test forms." },
|
| 361 |
-
# { id: 28, x: 100, y: 600, name: "Differential Item Functioning", description: "Implement statistical methods using Pandas to detect and analyze differential item functioning (DIF) in exams, ensuring fairness across different demographic groups." },
|
| 362 |
-
# { id: 29, x: 200, y: 700, name: "Automated Feedback Generation", description: "Create Pandas-based systems to generate personalized feedback for test-takers based on their exam performance and identified areas for improvement." },
|
| 363 |
-
# { id: 30, x: 300, y: 800, name: "Exam Security Analysis", description: "Develop analytical tools using Pandas to assess and enhance exam security, including analysis of item exposure rates and detection of potential security breaches." }
|
| 364 |
-
# ];
|
| 365 |
-
# const connections = [
|
| 366 |
-
# { source: 1, target: 2 },
|
| 367 |
-
# { source: 2, target: 3 },
|
| 368 |
-
# { source: 3, target: 4 },
|
| 369 |
-
# { source: 4, target: 5 },
|
| 370 |
-
# { source: 5, target: 7 },
|
| 371 |
-
# { source: 6, target: 7 },
|
| 372 |
-
# { source: 7, target: 8 },
|
| 373 |
-
# { source: 8, target: 9 },
|
| 374 |
-
# { source: 9, target: 16 },
|
| 375 |
-
# { source: 10, target: 13 },
|
| 376 |
-
# { source: 11, target: 12 },
|
| 377 |
-
# { source: 12, target: 20 },
|
| 378 |
-
# { source: 13, target: 16 },
|
| 379 |
-
# { source: 14, target: 21 },
|
| 380 |
-
# { source: 15, target: 17 },
|
| 381 |
-
# { source: 16, target: 18 },
|
| 382 |
-
# { source: 17, target: 19 },
|
| 383 |
-
# { source: 18, target: 22 },
|
| 384 |
-
# { source: 19, target: 21 },
|
| 385 |
-
# { source: 20, target: 29 },
|
| 386 |
-
# { source: 21, target: 30 },
|
| 387 |
-
# { source: 22, target: 23 },
|
| 388 |
-
# { source: 23, target: 25 },
|
| 389 |
-
# { source: 24, target: 12 },
|
| 390 |
-
# { source: 25, target: 23 },
|
| 391 |
-
# { source: 26, target: 15 },
|
| 392 |
-
# { source: 27, target: 15 },
|
| 393 |
-
# { source: 28, target: 22 },
|
| 394 |
-
# { source: 29, target: 23 },
|
| 395 |
-
# { source: 30, target: 21 },
|
| 396 |
-
# // Additional connections for more interconnectivity
|
| 397 |
-
# { source: 1, target: 10 },
|
| 398 |
-
# { source: 2, target: 6 },
|
| 399 |
-
# { source: 3, target: 13 },
|
| 400 |
-
# { source: 4, target: 15 },
|
| 401 |
-
# { source: 5, target: 28 },
|
| 402 |
-
# { source: 8, target: 23 },
|
| 403 |
-
# { source: 11, target: 25 },
|
| 404 |
-
# { source: 14, target: 30 },
|
| 405 |
-
# { source: 24, target: 17 },
|
| 406 |
-
# { source: 26, target: 29 }
|
| 407 |
-
# ];
|
| 408 |
-
# const svg = d3.select("#visualization")
|
| 409 |
-
# .append("svg")
|
| 410 |
-
# .attr("width", width)
|
| 411 |
-
# .attr("height", height);
|
| 412 |
-
# const simulation = d3.forceSimulation(goals)
|
| 413 |
-
# .force("link", d3.forceLink(connections).id(d => d.id))
|
| 414 |
-
# .force("charge", d3.forceManyBody().strength(-400))
|
| 415 |
-
# .force("center", d3.forceCenter(width / 2, height / 2));
|
| 416 |
-
# const link = svg.append("g")
|
| 417 |
-
# .selectAll("line")
|
| 418 |
-
# .data(connections)
|
| 419 |
-
# .enter().append("line")
|
| 420 |
-
# .attr("stroke", "#999")
|
| 421 |
-
# .attr("stroke-opacity", 0.6);
|
| 422 |
-
# const node = svg.append("g")
|
| 423 |
-
# .selectAll("circle")
|
| 424 |
-
# .data(goals)
|
| 425 |
-
# .enter().append("circle")
|
| 426 |
-
# .attr("r", 10)
|
| 427 |
-
# .attr("fill", d => d.color)
|
| 428 |
-
# .call(d3.drag()
|
| 429 |
-
# .on("start", dragstarted)
|
| 430 |
-
# .on("drag", dragged)
|
| 431 |
-
# .on("end", dragended));
|
| 432 |
-
# const text = svg.append("g")
|
| 433 |
-
# .selectAll("text")
|
| 434 |
-
# .data(goals)
|
| 435 |
-
# .enter().append("text")
|
| 436 |
-
# .text(d => d.name)
|
| 437 |
-
# .attr("font-size", "12px")
|
| 438 |
-
# .attr("dx", 12)
|
| 439 |
-
# .attr("dy", 4);
|
| 440 |
-
# node.on("click", async function(event, d) {
|
| 441 |
-
# const response = await fetch('/generate_goals', {
|
| 442 |
-
# method: 'POST',
|
| 443 |
-
# headers: { 'Content-Type': 'application/json' },
|
| 444 |
-
# body: JSON.stringify({ input_var: d.name })
|
| 445 |
-
# });
|
| 446 |
-
# const data = await response.json();
|
| 447 |
-
# document.getElementById("generatedGoals").innerHTML = `<h2>Generated Goals for ${d.name}</h2><pre>${data.goals}</pre>`;
|
| 448 |
-
# });
|
| 449 |
-
# simulation.on("tick", () => {
|
| 450 |
-
# link
|
| 451 |
-
# .attr("x1", d => d.source.x)
|
| 452 |
-
# .attr("y1", d => d.source.y)
|
| 453 |
-
# .attr("x2", d => d.target.x)
|
| 454 |
-
# .attr("y2", d => d.target.y);
|
| 455 |
-
# node
|
| 456 |
-
# .attr("cx", d => d.x)
|
| 457 |
-
# .attr("cy", d => d.y);
|
| 458 |
-
# text
|
| 459 |
-
# .attr("x", d => d.x)
|
| 460 |
-
# .attr("y", d => d.y);
|
| 461 |
-
# });
|
| 462 |
-
# function dragstarted(event) {
|
| 463 |
-
# if (!event.active) simulation.alphaTarget(0.3).restart();
|
| 464 |
-
# event.subject.fx = event.subject.x;
|
| 465 |
-
# event.subject.fy = event.subject.y;
|
| 466 |
-
# }
|
| 467 |
-
# function dragged(event) {
|
| 468 |
-
# event.subject.fx = event.x;
|
| 469 |
-
# event.subject.fy = event.y;
|
| 470 |
-
# }
|
| 471 |
-
# function dragended(event) {
|
| 472 |
-
# if (!event.active) simulation.alphaTarget(0);
|
| 473 |
-
# event.subject.fx = null;
|
| 474 |
-
# event.subject.fy = null;
|
| 475 |
-
# }
|
| 476 |
-
# </script>
|
| 477 |
-
# </body>
|
| 478 |
-
# </html>
|
| 479 |
-
# """
|
| 480 |
-
|
| 481 |
-
# @app.route('/')
|
| 482 |
-
# def index():
|
| 483 |
-
# return render_template_string(html_content)
|
| 484 |
-
|
| 485 |
-
# @app.route('/generate_goals', methods=['POST'])
|
| 486 |
-
# def generate_goals_api():
|
| 487 |
-
# input_var = request.json['input_var']
|
| 488 |
-
# goals = generate_goals(input_var)
|
| 489 |
-
# return jsonify({'goals': goals})
|
| 490 |
-
|
| 491 |
-
# if __name__ == "__main__":
|
| 492 |
-
# app.run(host='0.0.0.0', port=7860)
|
| 493 |
-
|
| 494 |
-
# imp
|
| 495 |
from http.server import HTTPServer, SimpleHTTPRequestHandler
|
| 496 |
# from pyngrok import ngrok
|
| 497 |
import os
|
|
@@ -537,21 +43,81 @@ html_content = """
|
|
| 537 |
<script>
|
| 538 |
const width = 1200;
|
| 539 |
const height = 800;
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 555 |
const svg = d3.select("#visualization")
|
| 556 |
.append("svg")
|
| 557 |
.attr("width", width)
|
|
@@ -652,178 +218,4 @@ if __name__ == '__main__':
|
|
| 652 |
server = HTTPServer(('', port), MyHandler)
|
| 653 |
# public_url = ngrok.connect(port).public_url
|
| 654 |
# print(f" * ngrok tunnel \"{public_url}\" -> \"http://127.0.0.1:{port}\"")
|
| 655 |
-
server.serve_forever()
|
| 656 |
-
|
| 657 |
-
# here
|
| 658 |
-
# from http.server import HTTPServer, SimpleHTTPRequestHandler
|
| 659 |
-
# import os
|
| 660 |
-
# from mistralai.client import MistralClient
|
| 661 |
-
# from mistralai.models.chat_completion import ChatMessage
|
| 662 |
-
# import json
|
| 663 |
-
|
| 664 |
-
# # Mistral AI setup
|
| 665 |
-
# api_key = os.getenv("MISTRAL_API_KEY")
|
| 666 |
-
# if not api_key:
|
| 667 |
-
# raise ValueError("MISTRAL_API_KEY environment variable not set")
|
| 668 |
-
|
| 669 |
-
# model = "mistral-tiny"
|
| 670 |
-
# client = MistralClient(api_key=api_key)
|
| 671 |
-
|
| 672 |
-
# def generate_goals(input_var):
|
| 673 |
-
# messages = [
|
| 674 |
-
# ChatMessage(role="user", content=f"Generate 5 specific, industry relevant goals for {input_var} using Python and Pandas in exam data analysis. Each goal should include a brief name and a one-sentence description of the task or skill.")
|
| 675 |
-
# ]
|
| 676 |
-
# try:
|
| 677 |
-
# response = client.chat(model=model, messages=messages)
|
| 678 |
-
# return response.choices[0].message.content
|
| 679 |
-
# except Exception as e:
|
| 680 |
-
# return f"An error occurred: {str(e)}"
|
| 681 |
-
|
| 682 |
-
# html_content = """
|
| 683 |
-
# <!DOCTYPE html>
|
| 684 |
-
# <html lang="en">
|
| 685 |
-
# <head>
|
| 686 |
-
# <meta charset="UTF-8">
|
| 687 |
-
# <meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 688 |
-
# <title>Exam Data Analysis Goals Generator</title>
|
| 689 |
-
# <script src="https://d3js.org/d3.v7.min.js"></script>
|
| 690 |
-
# <style>
|
| 691 |
-
# #visualization { width: 100%; height: 600px; border: 1px solid #ccc; }
|
| 692 |
-
# #generatedGoals { margin-top: 20px; padding: 10px; border: 1px solid #ccc; }
|
| 693 |
-
# </style>
|
| 694 |
-
# </head>
|
| 695 |
-
# <body>
|
| 696 |
-
# <h1>Exam Data Analysis Goals Generator</h1>
|
| 697 |
-
# <div id="visualization"></div>
|
| 698 |
-
# <div id="generatedGoals"></div>
|
| 699 |
-
# <script>
|
| 700 |
-
# const width = 1200;
|
| 701 |
-
# const height = 800;
|
| 702 |
-
# const goals = [
|
| 703 |
-
# { id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
|
| 704 |
-
# { id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
|
| 705 |
-
# { id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
|
| 706 |
-
# { id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
|
| 707 |
-
# { id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
|
| 708 |
-
# // Add more goals here...
|
| 709 |
-
# ];
|
| 710 |
-
# const connections = [
|
| 711 |
-
# { source: 1, target: 2 },
|
| 712 |
-
# { source: 2, target: 3 },
|
| 713 |
-
# { source: 3, target: 4 },
|
| 714 |
-
# { source: 4, target: 5 },
|
| 715 |
-
# // Add more connections here...
|
| 716 |
-
# ];
|
| 717 |
-
# const svg = d3.select("#visualization")
|
| 718 |
-
# .append("svg")
|
| 719 |
-
# .attr("width", width)
|
| 720 |
-
# .attr("height", height);
|
| 721 |
-
# const simulation = d3.forceSimulation(goals)
|
| 722 |
-
# .force("link", d3.forceLink(connections).id(d => d.id))
|
| 723 |
-
# .force("charge", d3.forceManyBody().strength(-400))
|
| 724 |
-
# .force("center", d3.forceCenter(width / 2, height / 2));
|
| 725 |
-
# const link = svg.append("g")
|
| 726 |
-
# .selectAll("line")
|
| 727 |
-
# .data(connections)
|
| 728 |
-
# .enter().append("line")
|
| 729 |
-
# .attr("stroke", "#999")
|
| 730 |
-
# .attr("stroke-opacity", 0.6);
|
| 731 |
-
# const node = svg.append("g")
|
| 732 |
-
# .selectAll("circle")
|
| 733 |
-
# .data(goals)
|
| 734 |
-
# .enter().append("circle")
|
| 735 |
-
# .attr("r", 10)
|
| 736 |
-
# .attr("fill", d => d.color || "#69b3a2")
|
| 737 |
-
# .call(d3.drag()
|
| 738 |
-
# .on("start", dragstarted)
|
| 739 |
-
# .on("drag", dragged)
|
| 740 |
-
# .on("end", dragended));
|
| 741 |
-
# const text = svg.append("g")
|
| 742 |
-
# .selectAll("text")
|
| 743 |
-
# .data(goals)
|
| 744 |
-
# .enter().append("text")
|
| 745 |
-
# .text(d => d.name)
|
| 746 |
-
# .attr("font-size", "12px")
|
| 747 |
-
# .attr("dx", 12)
|
| 748 |
-
# .attr("dy", 4);
|
| 749 |
-
# node.on("click", async function(event, d) {
|
| 750 |
-
# const response = await fetch('/generate_goals', {
|
| 751 |
-
# method: 'POST',
|
| 752 |
-
# headers: { 'Content-Type': 'application/json' },
|
| 753 |
-
# body: JSON.stringify({ input_var: d.name })
|
| 754 |
-
# });
|
| 755 |
-
# const data = await response.json();
|
| 756 |
-
# document.getElementById("generatedGoals").innerHTML = `<h2>Generated Goals for ${d.name}</h2><pre>${data.goals}</pre>`;
|
| 757 |
-
# });
|
| 758 |
-
# simulation.on("tick", () => {
|
| 759 |
-
# link
|
| 760 |
-
# .attr("x1", d => d.source.x)
|
| 761 |
-
# .attr("y1", d => d.source.y)
|
| 762 |
-
# .attr("x2", d => d.target.x)
|
| 763 |
-
# .attr("y2", d => d.target.y);
|
| 764 |
-
# node
|
| 765 |
-
# .attr("cx", d => d.x)
|
| 766 |
-
# .attr("cy", d => d.y);
|
| 767 |
-
# text
|
| 768 |
-
# .attr("x", d => d.x)
|
| 769 |
-
# .attr("y", d => d.y);
|
| 770 |
-
# });
|
| 771 |
-
# function dragstarted(event) {
|
| 772 |
-
# if (!event.active) simulation.alphaTarget(0.3).restart();
|
| 773 |
-
# event.subject.fx = event.subject.x;
|
| 774 |
-
# event.subject.fy = event.subject.y;
|
| 775 |
-
# }
|
| 776 |
-
# function dragged(event) {
|
| 777 |
-
# event.subject.fx = event.x;
|
| 778 |
-
# event.subject.fy = event.y;
|
| 779 |
-
# }
|
| 780 |
-
# function dragended(event) {
|
| 781 |
-
# if (!event.active) simulation.alphaTarget(0);
|
| 782 |
-
# event.subject.fx = null;
|
| 783 |
-
# event.subject.fy = null;
|
| 784 |
-
# }
|
| 785 |
-
# </script>
|
| 786 |
-
# </body>
|
| 787 |
-
# </html>
|
| 788 |
-
# """
|
| 789 |
-
|
| 790 |
-
# class MyHandler(SimpleHTTPRequestHandler):
|
| 791 |
-
# def do_GET(self):
|
| 792 |
-
# self.send_response(200)
|
| 793 |
-
# self.send_header('Content-type', 'text/html')
|
| 794 |
-
# self.end_headers()
|
| 795 |
-
# self.wfile.write(html_content.encode())
|
| 796 |
-
|
| 797 |
-
# def do_POST(self):
|
| 798 |
-
# if self.path == '/generate_goals':
|
| 799 |
-
# try:
|
| 800 |
-
# content_length = int(self.headers['Content-Length'])
|
| 801 |
-
# post_data = self.rfile.read(content_length)
|
| 802 |
-
# data = json.loads(post_data.decode('utf-8'))
|
| 803 |
-
# input_var = data['input_var']
|
| 804 |
-
# goals = generate_goals(input_var)
|
| 805 |
-
|
| 806 |
-
# response = json.dumps({'goals': goals}).encode()
|
| 807 |
-
# self.send_response(200)
|
| 808 |
-
# self.send_header('Content-type', 'application/json')
|
| 809 |
-
# self.send_header('Content-Length', str(len(response)))
|
| 810 |
-
# self.end_headers()
|
| 811 |
-
# self.wfile.write(response)
|
| 812 |
-
# except Exception as e:
|
| 813 |
-
# logging.error(f"Error handling POST request: {str(e)}")
|
| 814 |
-
# self.send_error(500, f"Internal server error: {str(e)}")
|
| 815 |
-
# else:
|
| 816 |
-
# self.send_error(404)
|
| 817 |
-
|
| 818 |
-
# def run_server(port):
|
| 819 |
-
# try:
|
| 820 |
-
# server = ThreadingHTTPServer(('0.0.0.0', port), MyHandler)
|
| 821 |
-
# print(f"Server running on port {port}")
|
| 822 |
-
# server.serve_forever()
|
| 823 |
-
# except Exception as e:
|
| 824 |
-
# logging.error(f"Error running server: {str(e)}")
|
| 825 |
-
# traceback.print_exc()
|
| 826 |
-
|
| 827 |
-
# if __name__ == '__main__':
|
| 828 |
-
# port = int(os.environ.get("PORT", 7860))
|
| 829 |
-
# run_server(port)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from http.server import HTTPServer, SimpleHTTPRequestHandler
|
| 2 |
# from pyngrok import ngrok
|
| 3 |
import os
|
|
|
|
| 43 |
<script>
|
| 44 |
const width = 1200;
|
| 45 |
const height = 800;
|
| 46 |
+
const goals = [
|
| 47 |
+
{ id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
|
| 48 |
+
{ id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
|
| 49 |
+
{ id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
|
| 50 |
+
{ id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
|
| 51 |
+
{ id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
|
| 52 |
+
{ id: 6, x: 200, y: 500, name: "Data Filtering", description: "Implement advanced filtering techniques to segment exam data based on various criteria (e.g., demographic info, score ranges) using boolean indexing and query() method in Pandas." },
|
| 53 |
+
{ id: 7, x: 300, y: 600, name: "Reporting Automation", description: "Develop automated reporting systems that use Pandas groupby() and agg() functions to generate summary statistics and performance reports for different exam cohorts." },
|
| 54 |
+
{ id: 8, x: 400, y: 500, name: "Data Visualization", description: "Create interactive dashboards for exam data visualization using Pandas with Plotly or Bokeh, allowing stakeholders to explore results dynamically." },
|
| 55 |
+
{ id: 9, x: 500, y: 600, name: "Time Series Analysis", description: "Implement time series analysis techniques using Pandas datetime functionality to track and forecast exam performance trends over multiple test administrations." },
|
| 56 |
+
{ id: 10, x: 300, y: 400, name: "Data Integration", description: "Develop processes to merge exam data with other relevant datasets (e.g., student information systems, learning management systems) using Pandas merge() and join() operations." },
|
| 57 |
+
{ id: 11, x: 600, y: 300, name: "Performance Optimization", description: "Improve the efficiency of Pandas operations on large exam datasets by utilizing techniques like chunking, multiprocessing, and query optimization." },
|
| 58 |
+
{ id: 12, x: 700, y: 400, name: "Machine Learning Integration", description: "Integrate machine learning models with Pandas for predictive analytics, such as predicting exam success or identifying at-risk students based on historical data." },
|
| 59 |
+
{ id: 13, x: 800, y: 500, name: "Custom Indexing", description: "Implement custom indexing strategies in Pandas to efficiently handle hierarchical exam data structures and improve data access patterns." },
|
| 60 |
+
{ id: 14, x: 900, y: 400, name: "Data Anonymization", description: "Develop Pandas-based workflows to anonymize sensitive exam data, ensuring compliance with privacy regulations while maintaining data utility for analysis." },
|
| 61 |
+
{ id: 15, x: 1000, y: 300, name: "Exam Item Analysis", description: "Create specialized functions using Pandas to perform detailed item analysis, including distractor analysis and reliability calculations for individual exam questions." },
|
| 62 |
+
{ id: 16, x: 600, y: 500, name: "Longitudinal Analysis", description: "Implement Pandas-based methods for tracking student performance across multiple exams over time, identifying learning trends and progress patterns." },
|
| 63 |
+
{ id: 17, x: 700, y: 600, name: "Adaptive Testing Analysis", description: "Develop analysis pipelines using Pandas to evaluate and optimize adaptive testing algorithms, including item selection strategies and scoring methods." },
|
| 64 |
+
{ id: 18, x: 800, y: 700, name: "Exam Equating", description: "Create Pandas workflows to perform exam equating, ensuring comparability of scores across different versions or administrations of an exam." },
|
| 65 |
+
{ id: 19, x: 900, y: 600, name: "Response Time Analysis", description: "Utilize Pandas to analyze exam response times, identifying patterns that may indicate guessing, test-taking strategies, or item difficulty." },
|
| 66 |
+
{ id: 20, x: 1000, y: 500, name: "Collaborative Filtering", description: "Implement collaborative filtering techniques using Pandas to recommend study materials or practice questions based on exam performance patterns." },
|
| 67 |
+
{ id: 21, x: 400, y: 700, name: "Exam Fraud Detection", description: "Develop anomaly detection algorithms using Pandas to identify potential exam fraud or unusual response patterns in large-scale testing programs." },
|
| 68 |
+
{ id: 22, x: 500, y: 800, name: "Standard Setting", description: "Create Pandas-based tools to assist in standard setting processes, analyzing expert judgments and examinee data to establish performance standards." },
|
| 69 |
+
{ id: 23, x: 600, y: 700, name: "Automated Reporting", description: "Implement automated report generation using Pandas and libraries like Jinja2 to create customized, data-driven exam reports for various stakeholders." },
|
| 70 |
+
{ id: 24, x: 700, y: 800, name: "Cross-validation", description: "Develop cross-validation frameworks using Pandas to assess the reliability and generalizability of predictive models in educational assessment contexts." },
|
| 71 |
+
{ id: 25, x: 800, y: 300, name: "API Integration", description: "Create Pandas-based interfaces to integrate exam data analysis workflows with external APIs, facilitating real-time data exchange and reporting." },
|
| 72 |
+
{ id: 26, x: 900, y: 200, name: "Natural Language Processing", description: "Implement NLP techniques using Pandas and libraries like NLTK to analyze free-text responses in exams, enabling automated scoring and content analysis." },
|
| 73 |
+
{ id: 27, x: 1000, y: 100, name: "Exam Blueprint Analysis", description: "Develop Pandas workflows to analyze exam blueprints, ensuring content coverage and alignment with learning objectives across multiple test forms." },
|
| 74 |
+
{ id: 28, x: 100, y: 600, name: "Differential Item Functioning", description: "Implement statistical methods using Pandas to detect and analyze differential item functioning (DIF) in exams, ensuring fairness across different demographic groups." },
|
| 75 |
+
{ id: 29, x: 200, y: 700, name: "Automated Feedback Generation", description: "Create Pandas-based systems to generate personalized feedback for test-takers based on their exam performance and identified areas for improvement." },
|
| 76 |
+
{ id: 30, x: 300, y: 800, name: "Exam Security Analysis", description: "Develop analytical tools using Pandas to assess and enhance exam security, including analysis of item exposure rates and detection of potential security breaches." }
|
| 77 |
+
];
|
| 78 |
+
const connections = [
|
| 79 |
+
{ source: 1, target: 2 },
|
| 80 |
+
{ source: 2, target: 3 },
|
| 81 |
+
{ source: 3, target: 4 },
|
| 82 |
+
{ source: 4, target: 5 },
|
| 83 |
+
{ source: 5, target: 7 },
|
| 84 |
+
{ source: 6, target: 7 },
|
| 85 |
+
{ source: 7, target: 8 },
|
| 86 |
+
{ source: 8, target: 9 },
|
| 87 |
+
{ source: 9, target: 16 },
|
| 88 |
+
{ source: 10, target: 13 },
|
| 89 |
+
{ source: 11, target: 12 },
|
| 90 |
+
{ source: 12, target: 20 },
|
| 91 |
+
{ source: 13, target: 16 },
|
| 92 |
+
{ source: 14, target: 21 },
|
| 93 |
+
{ source: 15, target: 17 },
|
| 94 |
+
{ source: 16, target: 18 },
|
| 95 |
+
{ source: 17, target: 19 },
|
| 96 |
+
{ source: 18, target: 22 },
|
| 97 |
+
{ source: 19, target: 21 },
|
| 98 |
+
{ source: 20, target: 29 },
|
| 99 |
+
{ source: 21, target: 30 },
|
| 100 |
+
{ source: 22, target: 23 },
|
| 101 |
+
{ source: 23, target: 25 },
|
| 102 |
+
{ source: 24, target: 12 },
|
| 103 |
+
{ source: 25, target: 23 },
|
| 104 |
+
{ source: 26, target: 15 },
|
| 105 |
+
{ source: 27, target: 15 },
|
| 106 |
+
{ source: 28, target: 22 },
|
| 107 |
+
{ source: 29, target: 23 },
|
| 108 |
+
{ source: 30, target: 21 },
|
| 109 |
+
// Additional connections for more interconnectivity
|
| 110 |
+
{ source: 1, target: 10 },
|
| 111 |
+
{ source: 2, target: 6 },
|
| 112 |
+
{ source: 3, target: 13 },
|
| 113 |
+
{ source: 4, target: 15 },
|
| 114 |
+
{ source: 5, target: 28 },
|
| 115 |
+
{ source: 8, target: 23 },
|
| 116 |
+
{ source: 11, target: 25 },
|
| 117 |
+
{ source: 14, target: 30 },
|
| 118 |
+
{ source: 24, target: 17 },
|
| 119 |
+
{ source: 26, target: 29 }
|
| 120 |
+
];
|
| 121 |
const svg = d3.select("#visualization")
|
| 122 |
.append("svg")
|
| 123 |
.attr("width", width)
|
|
|
|
| 218 |
server = HTTPServer(('', port), MyHandler)
|
| 219 |
# public_url = ngrok.connect(port).public_url
|
| 220 |
# print(f" * ngrok tunnel \"{public_url}\" -> \"http://127.0.0.1:{port}\"")
|
| 221 |
+
server.serve_forever()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|