Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,147 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
)
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
)
|
17 |
-
|
18 |
-
# Instructions
|
19 |
-
st.write(
|
20 |
-
"Upload a file or paste your code below to get an AI-generated code review."
|
21 |
-
)
|
22 |
-
|
23 |
-
# Input Methods: File Upload or Text Area
|
24 |
-
uploaded_file = st.file_uploader(
|
25 |
-
"Upload a code file (Max 500 lines)", type=["py", "js", "txt"]
|
26 |
-
)
|
27 |
-
code_input = st.text_area("Or paste your code here (Max 1000 words)", height=300)
|
28 |
-
|
29 |
-
# Limit input size for code
|
30 |
-
if uploaded_file:
|
31 |
-
code = uploaded_file.read().decode("utf-8")
|
32 |
-
if len(code.splitlines()) > 500:
|
33 |
-
st.error(
|
34 |
-
"File is too large! Please upload a file with a maximum of 500 lines."
|
35 |
-
)
|
36 |
-
code = None # Reset code if it's too large
|
37 |
else:
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
with
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
st.success("You can download the code review as code_review.txt")
|
63 |
-
|
64 |
-
# Button to trigger code refactoring
|
65 |
-
if st.button("Refactor Code") and code:
|
66 |
-
with st.spinner("Refactoring your code..."):
|
67 |
-
refactored_code = refactor_code(code)
|
68 |
-
st.subheader("Refactored Code:")
|
69 |
-
st.write(refactored_code)
|
70 |
-
|
71 |
-
# Provide download option for refactored code
|
72 |
-
st.download_button(
|
73 |
-
label="Download Refactored Code",
|
74 |
-
data=refactored_code,
|
75 |
-
file_name="refactored_code.txt",
|
76 |
-
mime="text/plain",
|
77 |
-
)
|
78 |
-
st.success("You can download the refactored code as refactored_code.txt")
|
79 |
-
|
80 |
-
# Button to trigger code feedback
|
81 |
-
if st.button("Get Code Feedback") and code:
|
82 |
-
with st.spinner("Getting feedback on your code..."):
|
83 |
-
feedback = code_feedback(code)
|
84 |
-
st.subheader("Code Feedback:")
|
85 |
-
st.write(feedback)
|
86 |
-
|
87 |
-
# Ensure feedback is a string for download
|
88 |
-
feedback_text = feedback if isinstance(feedback, str) else str(feedback)
|
89 |
-
|
90 |
-
# Provide download option for code feedback
|
91 |
-
st.download_button(
|
92 |
-
label="Download Code Feedback",
|
93 |
-
data=feedback_text, # Use the extracted string here
|
94 |
-
file_name="code_feedback.txt",
|
95 |
-
mime="text/plain",
|
96 |
-
)
|
97 |
-
st.success("You can download the code feedback as code_feedback.txt")
|
98 |
-
|
99 |
-
# Add button to suggest best practices
|
100 |
-
if st.button("Suggest Best Practices") and code:
|
101 |
-
with st.spinner("Getting best practices..."):
|
102 |
-
best_practices = suggest_best_practices(code)
|
103 |
-
st.subheader("Best Practices Suggestions:")
|
104 |
-
st.write(best_practices)
|
105 |
-
|
106 |
-
# Provide download option for best practices suggestions
|
107 |
-
best_practices_text = (
|
108 |
-
best_practices
|
109 |
-
if isinstance(best_practices, str)
|
110 |
-
else str(best_practices)
|
111 |
-
)
|
112 |
-
st.download_button(
|
113 |
-
label="Download Best Practices Suggestions",
|
114 |
-
data=best_practices_text,
|
115 |
-
file_name="best_practices.txt",
|
116 |
-
mime="text/plain",
|
117 |
-
)
|
118 |
-
st.success(
|
119 |
-
"You can download the best practices suggestions as best_practices.txt"
|
120 |
-
)
|
121 |
-
|
122 |
-
# Button to trigger error removal
|
123 |
-
if st.button("Remove Code Errors") and code:
|
124 |
-
with st.spinner("Removing errors from your code..."):
|
125 |
-
error_removal_suggestions = remove_code_errors(code)
|
126 |
-
st.subheader("Error Removal Suggestions:")
|
127 |
-
st.write(error_removal_suggestions)
|
128 |
-
|
129 |
-
# Provide download option for error removal suggestions
|
130 |
-
error_removal_text = (
|
131 |
-
error_removal_suggestions
|
132 |
-
if isinstance(error_removal_suggestions, str)
|
133 |
-
else str(error_removal_suggestions)
|
134 |
-
)
|
135 |
-
st.download_button(
|
136 |
-
label="Download Error Removal Suggestions",
|
137 |
-
data=error_removal_text,
|
138 |
-
file_name="error_removal_suggestions.txt",
|
139 |
-
mime="text/plain",
|
140 |
-
)
|
141 |
-
st.success(
|
142 |
-
"You can download the error removal suggestions as error_removal_suggestions.txt"
|
143 |
-
)
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
if __name__ == "__main__":
|
147 |
main()
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
import os
|
3 |
+
from docx import Document
|
4 |
+
from llama_index.llms.together import TogetherLLM
|
5 |
+
from llama_index.core.llms import ChatMessage, MessageRole
|
6 |
+
from Bio import Entrez
|
7 |
+
import ssl
|
8 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
9 |
import streamlit as st
|
10 |
+
from googleapiclient.discovery import build
|
11 |
+
from typing import List, Optional
|
12 |
+
|
13 |
+
load_dotenv()
|
14 |
+
# 995d5f1a8de125c5b39bb48c2613e85f57d53c0e498a87d1ff33f0ec89a26ec7
|
15 |
+
os.environ["TOGETHER_API"] = os.getenv("TOGETHER_API")
|
16 |
+
os.environ["GOOGLE_SEARCH_API_KEY"] = os.getenv("GOOGLE_SEARCH_API_KEY")
|
17 |
+
|
18 |
+
def search_pubmed(query: str) -> Optional[List[str]]:
|
19 |
+
"""
|
20 |
+
Searches PubMed for a given query and returns a list of formatted results
|
21 |
+
(or None if no results are found).
|
22 |
+
"""
|
23 |
+
Entrez.email = "[email protected]" # Replace with your email
|
24 |
+
|
25 |
+
try:
|
26 |
+
ssl._create_default_https_context = ssl._create_unverified_context
|
27 |
+
|
28 |
+
handle = Entrez.esearch(db="pubmed", term=query, retmax=3)
|
29 |
+
record = Entrez.read(handle)
|
30 |
+
id_list = record["IdList"]
|
31 |
+
|
32 |
+
if not id_list:
|
33 |
+
return None
|
34 |
+
|
35 |
+
handle = Entrez.efetch(db="pubmed", id=id_list, retmode="xml")
|
36 |
+
articles = Entrez.read(handle)
|
37 |
+
|
38 |
+
results = []
|
39 |
+
for article in articles['PubmedArticle']:
|
40 |
+
try:
|
41 |
+
medline_citation = article['MedlineCitation']
|
42 |
+
article_data = medline_citation['Article']
|
43 |
+
title = article_data['ArticleTitle']
|
44 |
+
abstract = article_data.get('Abstract', {}).get('AbstractText', [""])[0]
|
45 |
+
|
46 |
+
result = f"**Title:** {title}\n**Abstract:** {abstract}\n"
|
47 |
+
result += f"**Link:** https://pubmed.ncbi.nlm.nih.gov/{medline_citation['PMID']} \n\n"
|
48 |
+
results.append(result)
|
49 |
+
except KeyError as e:
|
50 |
+
print(f"Error parsing article: {article}, Error: {e}")
|
51 |
+
|
52 |
+
return results
|
53 |
+
|
54 |
+
except Exception as e:
|
55 |
+
print(f"Error accessing PubMed: {e}")
|
56 |
+
return None
|
57 |
+
|
58 |
+
def chat_with_pubmed(article_text, article_link):
|
59 |
+
"""
|
60 |
+
Engages in a chat-like interaction with a PubMed article using TogetherLLM.
|
61 |
+
"""
|
62 |
+
try:
|
63 |
+
llm = TogetherLLM(model="QWEN/QWEN1.5-14B-CHAT", api_key=os.environ['TOGETHER_API'])
|
64 |
+
messages = [
|
65 |
+
ChatMessage(role=MessageRole.SYSTEM, content="You are a helpful AI assistant summarizing and answering questions about the following medical research article: " + article_link),
|
66 |
+
ChatMessage(role=MessageRole.USER, content=article_text)
|
67 |
+
]
|
68 |
+
response = llm.chat(messages)
|
69 |
+
return str(response) if response else "I'm sorry, I couldn't generate a summary for this article."
|
70 |
+
except Exception as e:
|
71 |
+
print(f"Error in chat_with_pubmed: {e}")
|
72 |
+
return "An error occurred while generating a summary."
|
73 |
+
|
74 |
+
def search_web(query: str, num_results: int = 3) -> Optional[List[str]]:
|
75 |
+
"""
|
76 |
+
Searches the web using the Google Search API and returns a list of formatted results
|
77 |
+
(or None if no results are found).
|
78 |
+
"""
|
79 |
+
try:
|
80 |
+
service = build("customsearch", "v1", developerKey=os.environ["GOOGLE_SEARCH_API_KEY"])
|
81 |
+
|
82 |
+
# Execute the search request
|
83 |
+
res = service.cse().list(q=query, cx="e31a5857f45ef4d2a", num=num_results).execute()
|
84 |
+
|
85 |
+
if "items" not in res:
|
86 |
+
return None
|
87 |
+
|
88 |
+
results = []
|
89 |
+
for item in res["items"]:
|
90 |
+
title = item["title"]
|
91 |
+
link = item["link"]
|
92 |
+
snippet = item["snippet"]
|
93 |
+
result = f"**Title:** {title}\n**Link:** {link} \n**Snippet:** {snippet}\n\n"
|
94 |
+
results.append(result)
|
95 |
+
|
96 |
+
return results
|
97 |
+
|
98 |
+
except Exception as e:
|
99 |
+
print(f"Error performing web search: {e}")
|
100 |
+
return None
|
101 |
+
|
102 |
+
|
103 |
+
from together import Together
|
104 |
+
def medmind_chatbot(user_input, chat_history=None):
|
105 |
+
"""
|
106 |
+
Processes user input, interacts with various resources, and generates a response.
|
107 |
+
Handles potential errors, maintains chat history,
|
108 |
+
"""
|
109 |
+
if chat_history is None:
|
110 |
+
chat_history = []
|
111 |
+
|
112 |
+
response_parts = [] # Collect responses from different sources
|
113 |
+
final_response = "";
|
114 |
+
|
115 |
+
try:
|
116 |
+
# PubMed Search and Chat
|
117 |
+
pubmed_results = search_pubmed(user_input)
|
118 |
+
if pubmed_results:
|
119 |
+
for article_text in pubmed_results:
|
120 |
+
title, abstract, link = article_text.split("\n")[:3]
|
121 |
+
# print(article_text)
|
122 |
+
response_parts.append(f"{title}\n{abstract}\n{link}\n")
|
123 |
+
else:
|
124 |
+
response_parts.append("No relevant PubMed articles found.")
|
125 |
|
126 |
+
# Web Search
|
127 |
+
web_results = search_web(user_input)
|
128 |
+
if web_results:
|
129 |
+
response_parts.append("\n\n**Web Search Results:**")
|
130 |
+
response_parts.extend(web_results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
else:
|
132 |
+
response_parts.append("No relevant web search results found.")
|
133 |
+
|
134 |
+
# Combine response parts into a single string
|
135 |
+
response_text = "\n\n".join(response_parts)
|
136 |
+
|
137 |
+
prompt = f"""You are a Health Assistant AI designed to provide detailed responses to health-related questions.
|
138 |
+
Based on the information retrieved from the PubMed and Web Search below, answer the user's query appropriately.
|
139 |
+
|
140 |
+
- If the user's query is health-related, provide a detailed and helpful response based on the retrieved information. Or if there is
|
141 |
+
some previous conversation then answer the health by seeing the previous conversation also.
|
142 |
+
- If the query is a general greeting (e.g., 'Hello', 'Hi'), respond as a friendly assistant.
|
143 |
+
- If the query is irrelevant or unrelated to health, respond with: 'I am a health assistant. Please ask only health-related questions.'
|
144 |
+
- Don't mention in response that where you reterived the information.
|
145 |
+
Previous Conversation:
|
146 |
+
{chat_history}
|
147 |
+
|
148 |
+
User's Query: {user_input}
|
149 |
+
|
150 |
+
Information retrieved from PubMed and Web Search:
|
151 |
+
{response_text}
|
152 |
+
|
153 |
+
Your response:"""
|
154 |
+
|
155 |
+
client = Together(api_key=os.environ.get('TOGETHER_API'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
response = client.chat.completions.create(
|
158 |
+
model="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
159 |
+
messages=[{"role": "user", "content": prompt}],
|
160 |
+
)
|
161 |
+
|
162 |
+
final_response = response.choices[0].message.content
|
163 |
+
|
164 |
+
except Exception as e:
|
165 |
+
print(f"Error in chatbot: {e}")
|
166 |
+
response_text = "An error occurred. Please try again later."
|
167 |
+
|
168 |
+
chat_history.append((user_input, final_response))
|
169 |
+
return final_response, chat_history
|
170 |
+
|
171 |
+
medmind_chatbot("What are the symptoms of COVID-19?")
|
172 |
+
|
173 |
+
import gradio as gr
|
174 |
+
|
175 |
+
def show_info_popup():
|
176 |
+
info = """
|
177 |
+
**HealthHive is an AI-powered chatbot designed to assist with medical information.**
|
178 |
+
...
|
179 |
+
"""
|
180 |
+
return info
|
181 |
+
|
182 |
+
|
183 |
+
def main():
|
184 |
+
# Initialize Gradio Interface
|
185 |
+
with gr.Blocks() as demo:
|
186 |
+
gr.Markdown("# HealthHive Chatbot")
|
187 |
+
gr.Markdown("Ask your medical questions and get reliable information!")
|
188 |
+
|
189 |
+
# Example Questions (Sidebar)
|
190 |
+
gr.Markdown("### Example Questions")
|
191 |
+
example_questions = [
|
192 |
+
"What are the symptoms of COVID-19?",
|
193 |
+
"How can I manage my diabetes?",
|
194 |
+
"What are the potential side effects of ibuprofen?",
|
195 |
+
"What lifestyle changes can help prevent heart disease?"
|
196 |
+
]
|
197 |
+
for question in example_questions:
|
198 |
+
gr.Markdown(f"- {question}")
|
199 |
+
|
200 |
+
# Chat History and User Input
|
201 |
+
with gr.Row():
|
202 |
+
user_input = gr.Textbox(label="You:", placeholder="Type your medical question here...", lines=2)
|
203 |
+
chat_history = gr.State([])
|
204 |
+
|
205 |
+
# Output Container
|
206 |
+
with gr.Row():
|
207 |
+
response = gr.Textbox(label="HealthHive:", placeholder="Response will appear here...", interactive=False, lines=10)
|
208 |
+
def clear_chat():
|
209 |
+
return "", ""
|
210 |
+
|
211 |
+
# Define function to update chat history and response
|
212 |
+
def on_submit(user_input, chat_history):
|
213 |
+
result, updated_history = medmind_chatbot(user_input, chat_history)
|
214 |
+
info = show_info_popup()
|
215 |
+
return result, updated_history, info
|
216 |
+
|
217 |
+
# Link the submit button to the chatbot function
|
218 |
+
gr.Button("Submit").click(on_submit, inputs=[user_input, chat_history], outputs=[response, chat_history])
|
219 |
+
# gr.Button("Start New Chat").click(lambda: [], outputs=[chat_history])
|
220 |
+
gr.Button("Start New Chat").click(clear_chat, outputs=[user_input, response])
|
221 |
+
|
222 |
+
|
223 |
+
demo.launch()
|
224 |
|
225 |
if __name__ == "__main__":
|
226 |
main()
|