harsh001 commited on
Commit
39383a6
·
1 Parent(s): 8c0faff

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +91 -0
app.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
3
+ from tensorflow.keras.preprocessing.image import img_to_array
4
+ from tensorflow.keras.models import load_model
5
+ import numpy as np
6
+ import cv2
7
+ import os
8
+ from tf_explain.core.grad_cam import GradCAM
9
+ from tf_explain.core.occlusion_sensitivity import OcclusionSensitivity
10
+
11
+ @st.cache(hash_funcs={cv2.dnn_Net: hash})
12
+ def load_face_detector_and_model():
13
+ prototxt_path = os.path.sep.join(["face_detector", "deploy.prototxt"])
14
+ weights_path = os.path.sep.join(["face_detector",
15
+ "res10_300x300_ssd_iter_140000.caffemodel"])
16
+ cnn_net = cv2.dnn.readNet(prototxt_path, weights_path)
17
+
18
+ return cnn_net
19
+
20
+ @st.cache(allow_output_mutation=True)
21
+ def load_cnn_model():
22
+ cnn_model = load_model("mask_detector.model")
23
+
24
+ return cnn_model
25
+
26
+ st.write('# Face Mask Image Detector')
27
+
28
+ net = load_face_detector_and_model()
29
+ model = load_cnn_model()
30
+
31
+ uploaded_image = st.sidebar.file_uploader("Choose a JPG file", type="jpg")
32
+ confidence_value = st.sidebar.slider('Confidence:', 0.0, 1.0, 0.5, 0.1)
33
+ if uploaded_image:
34
+ st.sidebar.info('Uploaded image:')
35
+ st.sidebar.image(uploaded_image, width=240)
36
+ grad_cam_button = st.sidebar.button('Grad CAM')
37
+ patch_size_value = st.sidebar.slider('Patch size:', 10, 90, 20, 10)
38
+ occlusion_sensitivity_button = st.sidebar.button('Occlusion Sensitivity')
39
+ image = cv2.imdecode(np.fromstring(uploaded_image.read(), np.uint8), 1)
40
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
41
+ orig = image.copy()
42
+ (h, w) = image.shape[:2]
43
+ blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300),
44
+ (104.0, 177.0, 123.0))
45
+ net.setInput(blob)
46
+ detections = net.forward()
47
+
48
+ for i in range(0, detections.shape[2]):
49
+ confidence = detections[0, 0, i, 2]
50
+ if confidence > confidence_value:
51
+ box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
52
+ (startX, startY, endX, endY) = box.astype("int")
53
+ (startX, startY) = (max(0, startX), max(0, startY))
54
+ (endX, endY) = (min(w - 1, endX), min(h - 1, endY))
55
+
56
+ face = image[startY:endY, startX:endX]
57
+ face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
58
+ face = cv2.resize(face, (224, 224))
59
+ face = img_to_array(face)
60
+ face = preprocess_input(face)
61
+ expanded_face = np.expand_dims(face, axis=0)
62
+
63
+ (mask, withoutMask) = model.predict(expanded_face)[0]
64
+
65
+ predicted_class = 0
66
+ label = "No Mask"
67
+ if mask > withoutMask:
68
+ label = "Mask"
69
+ predicted_class = 1
70
+
71
+ color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
72
+ label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)
73
+ cv2.putText(image, label, (startX, startY - 10),
74
+ cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
75
+ cv2.rectangle(image, (startX, startY), (endX, endY), color, 2)
76
+ st.image(image, width=640)
77
+ st.write('### ' + label)
78
+
79
+ if grad_cam_button:
80
+ data = ([face], None)
81
+ explainer = GradCAM()
82
+ grad_cam_grid = explainer.explain(
83
+ data, model, class_index=predicted_class, layer_name="Conv_1"
84
+ )
85
+ st.image(grad_cam_grid)
86
+
87
+ if occlusion_sensitivity_button:
88
+ data = ([face], None)
89
+ explainer = OcclusionSensitivity()
90
+ sensitivity_occlusion_grid = explainer.explain(data, model, predicted_class, patch_size_value)
91
+ st.image(sensitivity_occlusion_grid)