Spaces:
Configuration error
Configuration error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
|
3 |
+
from tensorflow.keras.preprocessing.image import img_to_array
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
import os
|
8 |
+
from tf_explain.core.grad_cam import GradCAM
|
9 |
+
from tf_explain.core.occlusion_sensitivity import OcclusionSensitivity
|
10 |
+
|
11 |
+
@st.cache(hash_funcs={cv2.dnn_Net: hash})
|
12 |
+
def load_face_detector_and_model():
|
13 |
+
prototxt_path = os.path.sep.join(["face_detector", "deploy.prototxt"])
|
14 |
+
weights_path = os.path.sep.join(["face_detector",
|
15 |
+
"res10_300x300_ssd_iter_140000.caffemodel"])
|
16 |
+
cnn_net = cv2.dnn.readNet(prototxt_path, weights_path)
|
17 |
+
|
18 |
+
return cnn_net
|
19 |
+
|
20 |
+
@st.cache(allow_output_mutation=True)
|
21 |
+
def load_cnn_model():
|
22 |
+
cnn_model = load_model("mask_detector.model")
|
23 |
+
|
24 |
+
return cnn_model
|
25 |
+
|
26 |
+
st.write('# Face Mask Image Detector')
|
27 |
+
|
28 |
+
net = load_face_detector_and_model()
|
29 |
+
model = load_cnn_model()
|
30 |
+
|
31 |
+
uploaded_image = st.sidebar.file_uploader("Choose a JPG file", type="jpg")
|
32 |
+
confidence_value = st.sidebar.slider('Confidence:', 0.0, 1.0, 0.5, 0.1)
|
33 |
+
if uploaded_image:
|
34 |
+
st.sidebar.info('Uploaded image:')
|
35 |
+
st.sidebar.image(uploaded_image, width=240)
|
36 |
+
grad_cam_button = st.sidebar.button('Grad CAM')
|
37 |
+
patch_size_value = st.sidebar.slider('Patch size:', 10, 90, 20, 10)
|
38 |
+
occlusion_sensitivity_button = st.sidebar.button('Occlusion Sensitivity')
|
39 |
+
image = cv2.imdecode(np.fromstring(uploaded_image.read(), np.uint8), 1)
|
40 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
41 |
+
orig = image.copy()
|
42 |
+
(h, w) = image.shape[:2]
|
43 |
+
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300),
|
44 |
+
(104.0, 177.0, 123.0))
|
45 |
+
net.setInput(blob)
|
46 |
+
detections = net.forward()
|
47 |
+
|
48 |
+
for i in range(0, detections.shape[2]):
|
49 |
+
confidence = detections[0, 0, i, 2]
|
50 |
+
if confidence > confidence_value:
|
51 |
+
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
52 |
+
(startX, startY, endX, endY) = box.astype("int")
|
53 |
+
(startX, startY) = (max(0, startX), max(0, startY))
|
54 |
+
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
|
55 |
+
|
56 |
+
face = image[startY:endY, startX:endX]
|
57 |
+
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
58 |
+
face = cv2.resize(face, (224, 224))
|
59 |
+
face = img_to_array(face)
|
60 |
+
face = preprocess_input(face)
|
61 |
+
expanded_face = np.expand_dims(face, axis=0)
|
62 |
+
|
63 |
+
(mask, withoutMask) = model.predict(expanded_face)[0]
|
64 |
+
|
65 |
+
predicted_class = 0
|
66 |
+
label = "No Mask"
|
67 |
+
if mask > withoutMask:
|
68 |
+
label = "Mask"
|
69 |
+
predicted_class = 1
|
70 |
+
|
71 |
+
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
|
72 |
+
label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)
|
73 |
+
cv2.putText(image, label, (startX, startY - 10),
|
74 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
|
75 |
+
cv2.rectangle(image, (startX, startY), (endX, endY), color, 2)
|
76 |
+
st.image(image, width=640)
|
77 |
+
st.write('### ' + label)
|
78 |
+
|
79 |
+
if grad_cam_button:
|
80 |
+
data = ([face], None)
|
81 |
+
explainer = GradCAM()
|
82 |
+
grad_cam_grid = explainer.explain(
|
83 |
+
data, model, class_index=predicted_class, layer_name="Conv_1"
|
84 |
+
)
|
85 |
+
st.image(grad_cam_grid)
|
86 |
+
|
87 |
+
if occlusion_sensitivity_button:
|
88 |
+
data = ([face], None)
|
89 |
+
explainer = OcclusionSensitivity()
|
90 |
+
sensitivity_occlusion_grid = explainer.explain(data, model, predicted_class, patch_size_value)
|
91 |
+
st.image(sensitivity_occlusion_grid)
|