Spaces:
Sleeping
Sleeping
add more adjustment
Browse files- .gitignore +3 -2
- app.py +1 -1
- app_facevit.py +34 -64
- faceNet_update_transformation.pth +3 -0
.gitignore
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
-
|
2 |
flagged
|
3 |
-
best_vit10.pth
|
|
|
|
1 |
+
app_facevit.py
|
2 |
flagged
|
3 |
+
best_vit10.pth
|
4 |
+
.gitattributes
|
app.py
CHANGED
@@ -38,7 +38,7 @@ model.load_state_dict(torch.load(model_path))
|
|
38 |
|
39 |
|
40 |
# Initialize MTCNN for face detection
|
41 |
-
mtcnn = MTCNN(keep_all=True, min_face_size=12,
|
42 |
|
43 |
def align_face(frame):
|
44 |
# Convert the frame to a PIL image if it's a numpy array
|
|
|
38 |
|
39 |
|
40 |
# Initialize MTCNN for face detection
|
41 |
+
mtcnn = MTCNN(keep_all=True, min_face_size=12,device=device)
|
42 |
|
43 |
def align_face(frame):
|
44 |
# Convert the frame to a PIL image if it's a numpy array
|
app_facevit.py
CHANGED
@@ -1,48 +1,32 @@
|
|
1 |
import torch
|
2 |
-
import
|
3 |
import numpy as np
|
4 |
-
from PIL import Image, ImageDraw
|
5 |
-
from torchvision import transforms
|
6 |
-
from transformers import ViTImageProcessor, ViTModel
|
7 |
-
from facenet_pytorch import MTCNN
|
8 |
import gradio as gr
|
|
|
|
|
9 |
import time
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
return x
|
28 |
-
|
29 |
-
# Load the pre-trained ViT model and processor
|
30 |
-
model_name = "google/vit-base-patch16-224"
|
31 |
-
processor = ViTImageProcessor.from_pretrained(model_name)
|
32 |
-
base_model = ViTModel.from_pretrained(model_name)
|
33 |
-
model = ViT(base_model)
|
34 |
-
model_path = r'best_vit11.pth'
|
35 |
-
model.load_state_dict(torch.load(model_path))
|
36 |
-
model.eval().to('cuda' if torch.cuda.is_available() else 'cpu')
|
37 |
-
|
38 |
-
# Initialize MTCNN for face detection
|
39 |
-
mtcnn = MTCNN(keep_all=True, min_face_size=20, device='cuda' if torch.cuda.is_available() else 'cpu')
|
40 |
-
|
41 |
def align_face(frame):
|
42 |
# Convert the frame to a PIL image if it's a numpy array
|
43 |
if isinstance(frame, np.ndarray):
|
44 |
frame = Image.fromarray(frame)
|
45 |
-
|
46 |
if boxes is not None and len(boxes) > 0:
|
47 |
faces = mtcnn(frame)
|
48 |
if faces is not None and len(faces) > 0:
|
@@ -51,18 +35,13 @@ def align_face(frame):
|
|
51 |
face = transforms.ToPILImage()(face)
|
52 |
return face, boxes[0]
|
53 |
return None, None
|
54 |
-
|
55 |
def draw_bounding_box(image, box):
|
56 |
draw = ImageDraw.Draw(image)
|
57 |
draw.rectangle(box.tolist(), outline="red", width=3)
|
58 |
return image
|
59 |
-
|
60 |
-
|
61 |
-
return
|
62 |
-
|
63 |
-
def cosine_similarity(embedding1, embedding2):
|
64 |
-
return np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
|
65 |
-
|
66 |
def process_images(image1, image2):
|
67 |
start_time = time.time()
|
68 |
|
@@ -75,24 +54,20 @@ def process_images(image1, image2):
|
|
75 |
if face1 is None or face2 is None:
|
76 |
return None, "Face not detected in one or both images."
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
face2 = processor(images=face2, return_tensors="pt").pixel_values.to('cuda' if torch.cuda.is_available() else 'cpu')
|
81 |
|
82 |
with torch.no_grad():
|
83 |
-
embedding1 =
|
84 |
-
embedding2 =
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
embedding2 = embedding2.flatten()
|
89 |
|
90 |
-
|
91 |
-
cosine_sim = cosine_similarity(embedding1, embedding2)
|
92 |
-
is_match = euclidean_dist < 0.2
|
93 |
|
94 |
# Calculate confidence
|
95 |
-
confidence = max(0.0, 1.0 -
|
96 |
print(f'confidence={confidence}')
|
97 |
end_time = time.time()
|
98 |
inference_time = end_time - start_time
|
@@ -101,21 +76,16 @@ def process_images(image1, image2):
|
|
101 |
image1_with_box = draw_bounding_box(image1, box1)
|
102 |
image2_with_box = draw_bounding_box(image2, box2)
|
103 |
|
104 |
-
result = f"
|
105 |
-
# result += f"Cosine Similarity: {cosine_sim:.2f}\n"
|
106 |
-
result += f"Match: {is_match}\n"
|
107 |
-
result += f"Inference time: {inference_time:.2f} seconds"
|
108 |
|
109 |
return [image1_with_box, image2_with_box], result
|
110 |
-
|
111 |
# Create the Gradio interface
|
112 |
iface = gr.Interface(
|
113 |
fn=process_images,
|
114 |
inputs=[gr.Image(type="pil"), gr.Image(type="pil")],
|
115 |
outputs=[gr.Gallery(), gr.Textbox()],
|
116 |
-
title="Face Verification with
|
117 |
description="Upload two images and the model will verify if the faces in both images are of the same person."
|
118 |
)
|
119 |
-
|
120 |
# Launch the interface
|
121 |
iface.launch(share=True, debug=True)
|
|
|
1 |
import torch
|
2 |
+
import torchvision.transforms as transforms
|
3 |
import numpy as np
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
+
from PIL import Image, ImageDraw
|
6 |
+
from facenet_pytorch import MTCNN, InceptionResnetV1
|
7 |
import time
|
8 |
+
# Initialize MTCNN for face detection with smaller face size detection
|
9 |
+
mtcnn = MTCNN(keep_all=True, device='cuda' if torch.cuda.is_available() else 'cpu', min_face_size=20)
|
10 |
+
# Load the pre-trained FaceNet model
|
11 |
+
facenet = InceptionResnetV1(pretrained='vggface2').eval().to('cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
+
model_path = r'faceNet_update_transformation.pth'
|
13 |
+
model_state_dict = torch.load(model_path)
|
14 |
+
facenet.load_state_dict(model_state_dict)
|
15 |
+
facenet.eval() # Set the model to evaluation mode
|
16 |
+
# Define the transformation with normalization
|
17 |
+
val_test_transform = transforms.Compose([
|
18 |
+
transforms.Resize((160, 160)), # FaceNet expects 160x160 input
|
19 |
+
transforms.ToTensor(),
|
20 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
21 |
+
])
|
22 |
+
def compare_faces(embedding1, embedding2, threshold=0.2): # Adjusted threshold
|
23 |
+
dist = np.linalg.norm(embedding1 - embedding2)
|
24 |
+
return dist, dist < threshold
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def align_face(frame):
|
26 |
# Convert the frame to a PIL image if it's a numpy array
|
27 |
if isinstance(frame, np.ndarray):
|
28 |
frame = Image.fromarray(frame)
|
29 |
+
boxes, _ = mtcnn.detect(frame)
|
30 |
if boxes is not None and len(boxes) > 0:
|
31 |
faces = mtcnn(frame)
|
32 |
if faces is not None and len(faces) > 0:
|
|
|
35 |
face = transforms.ToPILImage()(face)
|
36 |
return face, boxes[0]
|
37 |
return None, None
|
|
|
38 |
def draw_bounding_box(image, box):
|
39 |
draw = ImageDraw.Draw(image)
|
40 |
draw.rectangle(box.tolist(), outline="red", width=3)
|
41 |
return image
|
42 |
+
def l2_normalize(tensor):
|
43 |
+
norm = np.linalg.norm(tensor, ord=2, axis=1, keepdims=True)
|
44 |
+
return tensor / norm
|
|
|
|
|
|
|
|
|
45 |
def process_images(image1, image2):
|
46 |
start_time = time.time()
|
47 |
|
|
|
54 |
if face1 is None or face2 is None:
|
55 |
return None, "Face not detected in one or both images."
|
56 |
|
57 |
+
face1 = val_test_transform(face1).unsqueeze(0).to('cuda' if torch.cuda.is_available() else 'cpu')
|
58 |
+
face2 = val_test_transform(face2).unsqueeze(0).to('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
59 |
|
60 |
with torch.no_grad():
|
61 |
+
embedding1 = facenet(face1).cpu().numpy()
|
62 |
+
embedding2 = facenet(face2).cpu().numpy()
|
63 |
|
64 |
+
embedding1 = l2_normalize(embedding1)
|
65 |
+
embedding2 = l2_normalize(embedding2)
|
|
|
66 |
|
67 |
+
distance, is_match = compare_faces(embedding1, embedding2, threshold=0.2)
|
|
|
|
|
68 |
|
69 |
# Calculate confidence
|
70 |
+
confidence = max(0.0, 1.0 - distance / 1.0) # Ensure confidence is between 0 and 1
|
71 |
print(f'confidence={confidence}')
|
72 |
end_time = time.time()
|
73 |
inference_time = end_time - start_time
|
|
|
76 |
image1_with_box = draw_bounding_box(image1, box1)
|
77 |
image2_with_box = draw_bounding_box(image2, box2)
|
78 |
|
79 |
+
result = f"Distance: {distance:.2f}\nMatch: {is_match}\nInference time: {inference_time:.2f} seconds"
|
|
|
|
|
|
|
80 |
|
81 |
return [image1_with_box, image2_with_box], result
|
|
|
82 |
# Create the Gradio interface
|
83 |
iface = gr.Interface(
|
84 |
fn=process_images,
|
85 |
inputs=[gr.Image(type="pil"), gr.Image(type="pil")],
|
86 |
outputs=[gr.Gallery(), gr.Textbox()],
|
87 |
+
title="Face Verification with FaceNet",
|
88 |
description="Upload two images and the model will verify if the faces in both images are of the same person."
|
89 |
)
|
|
|
90 |
# Launch the interface
|
91 |
iface.launch(share=True, debug=True)
|
faceNet_update_transformation.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86b4b567798373e423655892a9a377038d2cfae87bbb073d3d9ae83b93a94081
|
3 |
+
size 112028666
|