File size: 1,783 Bytes
9fcad62
 
b42a3d4
9fcad62
 
 
 
 
b42a3d4
 
 
 
 
 
9fcad62
 
 
b42a3d4
9fcad62
b42a3d4
 
 
 
 
 
9fcad62
b42a3d4
 
 
9fcad62
b42a3d4
 
 
 
 
 
9fcad62
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import gradio as gr
import tensorflow as tf
from tensorflow.keras.applications.resnet import ResNet152, preprocess_input, decode_predictions
from tensorflow.keras.preprocessing.image import img_to_array
from PIL import Image
import numpy as np

# Load the pre-trained ResNet152 model
MODEL_PATH = "resnet152-image-classifier.h5"  # Path to the saved model
try:
    model = tf.keras.models.load_model(MODEL_PATH)
except Exception as e:
    print(f"Error loading model: {e}")
    exit()

def predict_image(image):
    """
    Process the uploaded image and return the top 3 predictions.
    """
    try:
        # Preprocess the image
        image = image.resize((224, 224))  # ResNet152 expects 224x224 input
        image_array = img_to_array(image)
        image_array = preprocess_input(image_array)  # Normalize the image
        image_array = np.expand_dims(image_array, axis=0)  # Add batch dimension

        # Get predictions
        predictions = model.predict(image_array)
        decoded_predictions = decode_predictions(predictions, top=3)[0]

        # Format predictions as a dictionary
        results = {label: f"{confidence * 100:.2f}%" for _, label, confidence in decoded_predictions}
        return results

    except Exception as e:
        return {"Error": str(e)}

# Create the Gradio interface
interface = gr.Interface(
    fn=predict_image,
    inputs=gr.Image(type="pil"),  # Accepts an image input
    outputs=gr.Label(num_top_classes=3),  # Shows top 3 predictions with confidence
    title="ResNet152 Image Classifier",
    description="Upload an image, and the model will predict what's in the image.",
    examples=["dog.jpg", "cat.jpg"],  # Example images for users to test
)

# Launch the Gradio app
if __name__ == "__main__":
    interface.launch()