File size: 1,674 Bytes
9fcad62 f1b1bc2 9fcad62 f1b1bc2 9fcad62 f6ff59d 9fcad62 b42a3d4 f1b1bc2 b42a3d4 9fcad62 b42a3d4 f1b1bc2 9fcad62 f6ff59d f1b1bc2 b42a3d4 f6ff59d 9fcad62 e48182c f1b1bc2 f6ff59d 9fcad62 f1b1bc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
import tensorflow as tf
from tensorflow.keras.applications import EfficientNetV2L
from tensorflow.keras.applications.efficientnet_v2 import preprocess_input, decode_predictions
from tensorflow.keras.preprocessing.image import img_to_array
from PIL import Image
import numpy as np
# Load a stronger pretrained model (EfficientNetV2L)
model = EfficientNetV2L(weights="imagenet")
def predict_image(image):
"""
Process the uploaded image and return the top 5 predictions as a list.
"""
try:
# Preprocess the image
image = image.resize((480, 480)) # EfficientNetV2L expects 480x480 input
image_array = img_to_array(image)
image_array = preprocess_input(image_array) # Normalize the image
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
# Get predictions
predictions = model.predict(image_array)
decoded_predictions = decode_predictions(predictions, top=5)[0]
# Format predictions as a list of tuples (label, confidence)
results = [(label, float(confidence)) for _, label, confidence in decoded_predictions]
return results
except Exception as e:
return [("Error", str(e))]
# Create the Gradio interface
interface = gr.Interface(
fn=predict_image,
inputs=gr.Image(type="pil"), # Accepts an image input
outputs=gr.Label(num_top_classes=2), # Shows top 5 predictions with confidence
title="Image Classifier",
description="Upload an image, and the model will predict what's in the image with higher accuracy.",
)
# Launch the Gradio app
if __name__ == "__main__":
interface.launch()
|