Spaces:
Sleeping
Sleeping
File size: 3,263 Bytes
b0801de 0a9b429 4e8a148 d211767 0a9b429 9bb7cec b0801de 9bb7cec 4e8a148 d211767 0a9b429 611534d 0a9b429 4e8a148 0a9b429 4e8a148 b0801de 4e8a148 0a9b429 4e8a148 a210028 4e5fb8f d211767 a210028 d211767 a210028 b0801de d211767 4e5fb8f d211767 0a9b429 b0801de 4e8a148 3503d68 b0801de 3503d68 b0801de 3503d68 611534d 94dab0b 611534d b0801de 3503d68 611534d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
def count_unique_trucks(video_path, frame_skip_factor=2):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return "Error: Unable to open video file."
unique_truck_ids = set()
truck_history = {}
# Get FPS of the video
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_skip = fps * frame_skip_factor # Skip frames based on the dynamic factor
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break # End of video
frame_count += 1
if frame_count % frame_skip != 0:
continue # Skip frames dynamically
# Run YOLOv12x inference
results = model(frame, verbose=False)
detections = []
for result in results:
for box in result.boxes:
class_id = int(box.cls.item()) # Get class ID
confidence = float(box.conf.item()) # Get confidence score
# Track only trucks
if class_id == TRUCK_CLASS_ID and confidence > CONFIDENCE_THRESHOLD:
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Get bounding box
detections.append([x1, y1, x2, y2, confidence])
if len(detections) > 0:
detections = np.array(detections)
tracked_objects = tracker.update(detections)
for obj in tracked_objects:
truck_id = int(obj[4]) # Unique ID assigned by SORT
x1, y1, x2, y2 = obj[:4] # Get the bounding box coordinates
truck_center = (x1 + x2) / 2, (y1 + y2) / 2 # Calculate the center of the truck
# If truck is already in history, check the movement distance
if truck_id in truck_history:
last_position = truck_history[truck_id]["position"]
distance = np.linalg.norm(np.array(truck_center) - np.array(last_position))
if distance > DISTANCE_THRESHOLD:
# If the truck moved significantly, count as new
unique_truck_ids.add(truck_id)
else:
# If truck is not in history, add it
truck_history[truck_id] = {
"frame_count": frame_count,
"position": truck_center
}
unique_truck_ids.add(truck_id)
cap.release()
return {"Total Unique Trucks": len(unique_truck_ids)}
# Gradio UI function
def analyze_video(video_file, frame_skip_factor):
result = count_unique_trucks(video_file, frame_skip_factor)
return "\n".join([f"{key}: {value}" for key, value in result.items()])
# Define Gradio interface
import gradio as gr
iface = gr.Interface(
fn=analyze_video,
inputs=[
gr.Video(label="Upload Video"),
gr.Slider(minimum=1, maximum=10, step=1, value=2, label="Frame Skip Factor"), # Fixed default value
],
outputs=gr.Textbox(label="Analysis Result"),
title="YOLOv12x Unique Truck Counter",
description="Upload a video to count unique trucks using YOLOv12x and SORT tracking. Adjust the frame skip factor to control processing speed."
)
# Launch the Gradio app
if __name__ == "__main__":
iface.launch()
|