File size: 3,362 Bytes
0a9b429
 
 
 
dccecf1
0a9b429
 
4e8a148
0a9b429
 
4e8a148
 
0a9b429
4e8a148
 
 
d211767
 
 
 
 
 
4e8a148
0a9b429
 
 
 
4e8a148
d211767
0a9b429
d211767
4e8a148
d211767
0a9b429
 
 
 
 
 
 
 
 
 
 
 
4e8a148
0a9b429
 
 
 
 
4e8a148
d211767
4e8a148
 
 
 
 
 
0a9b429
4e8a148
 
a210028
4e5fb8f
d211767
a210028
d211767
 
 
a210028
 
d211767
 
4e5fb8f
d211767
 
 
 
 
 
 
 
0a9b429
 
 
4e8a148
0a9b429
 
 
4e8a148
0a9b429
 
 
d211767
0a9b429
 
 
c3cdf4b
4e8a148
 
0a9b429
 
 
 
4e8a148
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import cv2
import numpy as np
import torch
from ultralytics import YOLO
from sort import Sort

# Load YOLOv12x model
MODEL_PATH = "yolov12x.pt"
model = YOLO(MODEL_PATH)

# COCO dataset class ID for truck
TRUCK_CLASS_ID = 7  # "truck"

# Initialize SORT tracker
tracker = Sort()

# Minimum confidence threshold for detection
CONFIDENCE_THRESHOLD = 0.5

# Distance threshold to avoid duplicate counts
DISTANCE_THRESHOLD = 50

def count_unique_trucks(video_path):
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        return "Error: Unable to open video file."

    unique_truck_ids = set()
    truck_history = {}

    frame_skip = 5  # Process every 5th frame for efficiency
    frame_count = 0

    while True:
        ret, frame = cap.read()
        if not ret:
            break  # End of video

        frame_count += 1
        if frame_count % frame_skip != 0:
            continue  # Skip frames to improve efficiency

        # Run YOLOv12x inference
        results = model(frame, verbose=False)

        detections = []
        for result in results:
            for box in result.boxes:
                class_id = int(box.cls.item())  # Get class ID
                confidence = float(box.conf.item())  # Get confidence score

                # Track only trucks
                if class_id == TRUCK_CLASS_ID and confidence > CONFIDENCE_THRESHOLD:
                    x1, y1, x2, y2 = map(int, box.xyxy[0])  # Get bounding box
                    detections.append([x1, y1, x2, y2, confidence])

        if len(detections) > 0:
            detections = np.array(detections)
            tracked_objects = tracker.update(detections)

            for obj in tracked_objects:
                truck_id = int(obj[4])  # Unique ID assigned by SORT
                x1, y1, x2, y2 = obj[:4]  # Get the bounding box coordinates

                truck_center = (x1 + x2) / 2, (y1 + y2) / 2  # Calculate the center of the truck

                # If truck is already in history, check the movement distance
                if truck_id in truck_history:
                    last_position = truck_history[truck_id]["position"]
                    distance = np.linalg.norm(np.array(truck_center) - np.array(last_position))

                    if distance > DISTANCE_THRESHOLD:
                        # If the truck moved significantly, count as new
                        unique_truck_ids.add(truck_id)

                else:
                    # If truck is not in history, add it
                    truck_history[truck_id] = {
                        "frame_count": frame_count,
                        "position": truck_center
                    }
                    unique_truck_ids.add(truck_id)

    cap.release()

    return {"Total Unique Trucks": len(unique_truck_ids)}

# Gradio UI function
def analyze_video(video_file):
    result = count_unique_trucks(video_file)
    return "\n".join([f"{key}: {value}" for key, value in result.items()])

# Define Gradio interface
import gradio as gr
iface = gr.Interface(
    fn=analyze_video,
    inputs=gr.Video(label="Upload Video"),
    outputs=gr.Textbox(label="Analysis Result"),
    title="YOLOv12x Unique Truck Counter",
    description="Upload a video to count unique trucks using YOLOv12x and SORT tracking."
)

# Launch the Gradio app
if __name__ == "__main__":
    iface.launch()