hb-setosys's picture
Update app.py
99a40c7 verified
raw
history blame
2.83 kB
import gradio as gr
import cv2
import numpy as np
import os
# Load YOLO model
net = cv2.dnn.readNet('yolov3.weights', 'yolov3.cfg')
# Enable GPU (if available)
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
# Load class names
with open('coco.names', 'r') as f:
classes = [line.strip() for line in f.readlines()]
# Get YOLO output layer names
output_layers_names = net.getUnconnectedOutLayersNames()
def count_people(video_path):
if not os.path.exists(video_path):
return "Error: Video file not found."
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return "Error: Unable to open video file."
frame_count = 0
people_per_frame = []
while True:
ret, frame = cap.read()
if not ret:
break
height, width, _ = frame.shape
# Convert frame to YOLO format
blob = cv2.dnn.blobFromImage(frame, 1/255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
# Forward pass
layer_outputs = net.forward(output_layers_names)
# Process detections
boxes, confidences = [], []
for output in layer_outputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if classes[class_id] == 'person' and confidence > 0.5:
center_x, center_y = int(detection[0] * width), int(detection[1] * height)
w, h = int(detection[2] * width), int(detection[3] * height)
x, y = int(center_x - w / 2), int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
# Apply Non-Maximum Suppression (NMS)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) if boxes else []
# Count people in this frame
people_per_frame.append(len(indexes))
frame_count += 1
cap.release()
# Generate analytics
return {
"Total Frames Processed": frame_count,
"Max People in a Single Frame": int(np.max(people_per_frame)) if people_per_frame else 0,
"Avg People Per Frame": round(np.mean(people_per_frame), 2) if people_per_frame else 0
}
# Gradio UI function
def analyze_video(video_file):
result = count_people(video_file)
return "\n".join([f"{key}: {value}" for key, value in result.items()])
# Gradio Interface
interface = gr.Interface(
fn=analyze_video,
inputs=gr.Video(label="Upload Video"),
outputs=gr.Textbox(label="People Counting Results"),
title="YOLO-based People Counter",
description="Upload a video to detect and count people using YOLOv3."
)
# Launch app
interface.launch()