Spaces:
Running
Running
File size: 1,353 Bytes
8d28437 e7ea0c7 8d28437 3a813cf 8d28437 3a813cf 8d28437 3a813cf e7ea0c7 5ab5708 3a813cf 5ab5708 e7ea0c7 3a813cf 8d28437 3a813cf 8d28437 3a813cf 8d28437 3a813cf 8d28437 e7ea0c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
# Load the model (ensure you have the correct model path)
model = tf.keras.models.load_model("denis_mnist_cnn_model.h5")
# Define a function to preprocess input and make predictions
def predict(image):
# Convert image to a numpy array
image = np.array(image)
# Resize the image to the expected shape (28, 28, 3) for RGB images
image = tf.image.resize(image, (28, 28)) # Resize to 28x28 pixels
# Check if the image is grayscale (single channel), and convert to RGB if necessary
if image.shape[-1] == 1: # If it's grayscale (single channel)
image = np.repeat(image, 3, axis=-1) # Convert grayscale to RGB by repeating the channel
# Normalize the image
image = image / 255.0
# Add batch dimension
image = np.expand_dims(image, axis=0) # Add batch dimension to match the model's expected input shape (1, 28, 28, 3)
# Perform prediction
prediction = model.predict(image)
# Return prediction as JSON
return {"prediction": prediction.tolist()}
# Create a Gradio interface
interface = gr.Interface(
fn=predict,
inputs="image", # Image input for testing
outputs="json" # JSON output for prediction results
)
# Launch the interface
interface.launch(share=True)
|