Spaces:
Running
Running
File size: 862 Bytes
8d28437 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import gradio as gr
import tensorflow as tf
import numpy as np
# Load the Keras model
model = tf.keras.models.load_model("denis_mnist_cnn_model.h5")
# Define a function to preprocess input and make predictions
def predict(image):
# Preprocess the image (resize, normalize, etc.)
image = tf.image.resize(image, (224, 224)) # Example: Resize to 224x224
image = np.expand_dims(image, axis=0) # Add batch dimension
image = image / 255.0 # Normalize pixel values
# Perform prediction
prediction = model.predict(image)
return {"prediction": prediction.tolist()}
# Create a Gradio interface
interface = gr.Interface(
fn=predict,
inputs="image", # Text input for comma-separated values
outputs="json" # JSON output for prediction results
)
# Launch the Gradio app
if __name__ == "__main__":
interface.launch()
|