Spaces:
Sleeping
Sleeping
File size: 6,240 Bytes
7bf2580 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings # Updated for Persian embeddings from langchain.vectorstores import FAISS from langchain.memory import ConversationBufferMemory from groq import Groq import requests from bs4 import BeautifulSoup from serpapi import GoogleSearch import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) client = Groq(api_key="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") embedding_model = HuggingFaceEmbeddings(model_name="HooshvareLab/bert-fa-base-uncased") memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) def process_pdf_with_langchain(pdf_path): try: loader = PyPDFLoader(pdf_path) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) split_documents = text_splitter.split_documents(documents) vectorstore = FAISS.from_documents(split_documents, embedding_model) retriever = vectorstore.as_retriever(search_kwargs={"k": 3}) return retriever except Exception as e: logger.error(f"Error processing PDF: {e}") raise SERPAPI_KEY = "8a20e83850a3be0a0b4e3aed98bd3addbad56e82d52e639e1a692a02d021bca1" def scrape_google_search(query, num_results=3): try: params = { "q": query, "hl": "fa", "gl": "ir", "num": num_results, "api_key": SERPAPI_KEY, } search = GoogleSearch(params) results = search.get_dict() if "error" in results: return f"Error: {results['error']}" search_results = [] for result in results.get("organic_results", []): title = result.get("title", "No Title") link = result.get("link", "No Link") search_results.append(f"{title}: {link}") return "\n".join(search_results) if search_results else "No results found" except Exception as e: logger.error(f"Error scraping Google search: {e}") return f"Error: {e}" def scrape_webpage(url): try: headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36" } response = requests.get(url, headers=headers) response.raise_for_status() soup = BeautifulSoup(response.content, "html.parser") text = soup.get_text(separator="\n") return text.strip() except Exception as e: logger.error(f"Error scraping webpage {url}: {e}") return f"Error: {e}" def generate_response(query, retriever=None, use_web_search=False, scrape_web=False): try: knowledge = "" if retriever: relevant_docs = retriever.get_relevant_documents(query) knowledge += "\n".join([doc.page_content for doc in relevant_docs]) if use_web_search: web_results = scrape_google_search(query) knowledge += f"\n\nWeb Search Results:\n{web_results}" if scrape_web: urls = [word for word in query.split() if word.startswith("http://") or word.startswith("https://")] for url in urls: webpage_content = scrape_webpage(url) knowledge += f"\n\nWebpage Content from {url}:\n{webpage_content}" chat_history = memory.load_memory_variables({}).get("chat_history", "") context = ( f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from Kermanshah University of Technology (KUT), " f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making." ) if knowledge: context += f"\n\nRelevant Knowledge:\n{knowledge}" if chat_history: context += f"\n\nChat History:\n{chat_history}" context += f"\n\nYou: {query}\nParvizGPT:" chat_completion = client.chat.completions.create( messages=[{"role": "user", "content": context}], model= "gemma2-9b-it" #"llama-3.3-70b-versatile", ) response = chat_completion.choices[0].message.content.strip() memory.save_context({"input": query}, {"output": response}) return response except Exception as e: logger.error(f"Error generating response: {e}") return f"Error: {e}" def gradio_interface(user_message, chat_box, pdf_file=None, enable_web_search=False, scrape_web=False): global retriever if pdf_file is not None: try: retriever = process_pdf_with_langchain(pdf_file.name) except Exception as e: return chat_box + [("Error", f"Error processing PDF: {e}")] response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search, scrape_web=scrape_web) chat_box.append(("You", user_message)) chat_box.append(("ParvizGPT", response)) return chat_box def clear_memory(): memory.clear() return [] retriever = None with gr.Blocks() as interface: gr.Markdown("## ParvizGPT") chat_box = gr.Chatbot(label="Chat History", value=[]) user_message = gr.Textbox( label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True, ) enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False) scrape_web = gr.Checkbox(label="🌍Scrape Webpages", value=False) clear_memory_btn = gr.Button("Clear Memory", interactive=True) pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True , scale=1) submit_btn = gr.Button("Submit") submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search, scrape_web], outputs=chat_box) user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search, scrape_web], outputs=chat_box) clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box) interface.launch() |