seekr / src /rag /neo4j_graphrag.py
Hemang Thakur
changed working directory
b2e81d3
import os
import gc
import time
import asyncio
import torch
import uuid
from contextlib import contextmanager
from neo4j import GraphDatabase
from pyvis.network import Network
from src.query_processing.late_chunking.late_chunker import LateChunker
from src.query_processing.query_processor import QueryProcessor
from src.reasoning.reasoner import Reasoner
from src.utils.api_key_manager import APIKeyManager
from src.search.search_engine import SearchEngine
from src.crawl.crawler import CustomCrawler #, Crawler
from sentence_transformers import SentenceTransformer
from bert_score.scorer import BERTScorer
import numpy as np
from concurrent.futures import ThreadPoolExecutor
from typing import List, Dict, Any
class Neo4jGraphRAG:
def __init__(self, num_workers: int = 1):
"""Initialize Neo4j connection and required components."""
# Neo4j connection setup
self.neo4j_uri = os.getenv("NEO4J_URI")
self.neo4j_user = os.getenv("NEO4J_USER")
self.neo4j_password = os.getenv("NEO4J_PASSWORD")
self.driver = GraphDatabase.driver(
self.neo4j_uri,
auth=(self.neo4j_user, self.neo4j_password)
)
# Component initialization
self.num_workers = num_workers
self.search_engine = SearchEngine()
self.query_processor = QueryProcessor()
self.reasoner = Reasoner()
# self.crawler = Crawler(verbose=True)
self.custom_crawler = CustomCrawler(max_concurrent_requests=1000)
self.chunking = LateChunker()
self.llm = APIKeyManager().get_llm()
# Model initialization
self.model = SentenceTransformer(
"dunzhang/stella_en_400M_v5",
trust_remote_code=True,
device="cuda" if torch.cuda.is_available() else "cpu"
)
self.scorer = BERTScorer(
model_type="roberta-base",
lang="en",
rescale_with_baseline=True,
device= "cpu" # "cuda" if torch.cuda.is_available() else "cpu"
)
# Counters and tracking
self.root_node_id = "QR"
self.node_counter = 0
self.sub_node_counter = 0
self.cross_connections = set()
# Add graph tracking
self.current_graph_id = None
# Thread pool
self.executor = ThreadPoolExecutor(max_workers=self.num_workers)
# Create a callback to emit an event
self.on_event_callback = None
def set_on_event_callback(self, callback):
"""Register a single callback to be triggered for various event types."""
self.on_event_callback = callback
async def emit_event(self, event_type: str, data: dict):
"""Helper method to safely emit an event if a callback is registered."""
if self.on_event_callback:
# Check if the callback is asynchronous or synchronous
if asyncio.iscoroutinefunction(self.on_event_callback):
# The callback signature: callback(event_type, data)
return await self.on_event_callback(event_type, data)
else:
return self.on_event_callback(event_type, data)
@contextmanager
def transaction(self, max_retries: int = 1):
"""Synchronous context manager for Neo4j transactions."""
session = self.driver.session()
retry_count = 0
while True:
try:
tx = session.begin_transaction()
try:
yield tx
tx.commit()
break
except Exception as e:
tx.rollback()
raise e
except Exception as e:
retry_count += 1
if retry_count >= max_retries:
print(f"Transaction failed after {max_retries} attempts: {str(e)}")
raise e
print(f"Transaction failed, retrying ({retry_count}/{max_retries}): {str(e)}")
time.sleep(1) # Use regular sleep for sync context
finally:
session.close()
def initialize_schema(self):
"""Check and initialize database schema."""
constraint_node_id_per_graph = None
index_node_query = None
index_node_role = None
constraint_graph_id = None
index_graph_created = None
constraint_node_graph = None
try:
with self.transaction() as tx:
# Check if schema already exists by looking for our composite constraint
constraint_node_id_per_graph = tx.run("""
SHOW CONSTRAINTS
WHERE name = 'constraint_node_id_per_graph'
""").data()
index_node_role = tx.run("""
SHOW INDEXES
WHERE name = 'index_node_role'
""").data()
index_node_graph_id = tx.run("""
SHOW INDEXES
WHERE name = 'index_node_graph_id'
""").data()
constraint_graph_id = tx.run("""
SHOW CONSTRAINTS
WHERE name = 'constraint_graph_id'
""").data()
index_graph_created = tx.run("""
SHOW INDEXES
WHERE name = 'index_graph_created'
""").data()
constraint_node_graph = tx.run("""
SHOW CONSTRAINTS
WHERE name = 'constraint_node_graph'
""").data()
if constraint_node_id_per_graph and index_node_role and \
index_node_graph_id and constraint_graph_id and index_graph_created and constraint_node_graph:
print("Database schema already initialized")
return
print("Initializing database schema...")
# Create composite constraint for node ID uniqueness within each graph
if not constraint_node_id_per_graph:
tx.run("""
CREATE CONSTRAINT constraint_node_id_per_graph IF NOT EXISTS
FOR (n:Node)
REQUIRE (n.id, n.graph_id) IS UNIQUE
""")
if not index_node_role:
tx.run("""
CREATE INDEX index_node_role IF NOT EXISTS FOR (n:Node)
ON (n.role)
""")
if not index_node_graph_id:
tx.run("""
CREATE INDEX index_node_graph_id IF NOT EXISTS FOR (n:Node)
ON (n.graph_id)
""")
# Graph management constraints
if not constraint_graph_id:
tx.run("""
CREATE CONSTRAINT constraint_graph_id IF NOT EXISTS
FOR (g:Graph)
REQUIRE g.id IS UNIQUE
""")
if not index_graph_created:
tx.run("""
CREATE INDEX index_graph_created IF NOT EXISTS FOR (g:Graph)
ON (g.created)
""")
if not constraint_node_graph:
tx.run("""
CREATE CONSTRAINT constraint_node_graph IF NOT EXISTS
FOR (n:Node)
REQUIRE n.graph_id IS NOT NULL
""")
print("Database schema initialization complete")
except Exception as e:
print(f"Error ensuring schema exists: {str(e)}")
raise
def add_node(self, node_id: str, query: str, data: str = "", role: str = None):
"""Add a node to the current graph."""
if self.current_graph_id is None:
raise Exception("Error: No current graph selected")
try:
with self.transaction() as tx:
# Generate embedding
embedding = self.model.encode(query).tolist()
# Create node with properties including embedding and graph ID
result = tx.run(
"""
MERGE (n:Node {id: $node_id, graph_id: $graph_id})
SET n.query = $node_query,
n.embedding = $embedding,
n.data = $data,
n.role = $role
""",
node_id=node_id,
graph_id=self.current_graph_id,
node_query=query,
embedding=embedding,
data=data,
role=role
)
print(f"Added node '{node_id}' to graph '{self.current_graph_id}' with role '{role}' and query: '{query}'")
except Exception as e:
print(f"Error adding node '{node_id}' to graph '{self.current_graph_id}' with role '{role}' and query: '{query}': {str(e)}")
raise
def add_edge(self, node1: str, node2: str, weight: float = 1.0, relationship_type: str = None):
"""Add an edge between two nodes in a way that preserves a DAG structure in the graph"""
if self.current_graph_id is None:
raise Exception("Error: No current graph selected")
# 1) Prevent self loops
if node1 == node2:
print(f"Cannot add edge to the same node {node1}!")
return
try:
with self.transaction() as tx:
# 2) Check if there is already a path from node2 back to node1
check_path = tx.run(
"""
MATCH (start:Node {id: $node2, graph_id: $graph_id})
MATCH (end:Node {id: $node1, graph_id: $graph_id})
// If there's any path of length >= 0 from 'start' to 'end',
// then creating (end)->(start) would introduce a cycle.
WHERE (start)-[:RELATION*0..]->(end)
RETURN COUNT(start) AS pathExists
""",
node1=node1,
node2=node2,
graph_id=self.current_graph_id
)
path_count = check_path.single()["pathExists"]
if path_count > 0:
print(f"An edge between {node1} -> {node2} already exists!")
return
# 3) Otherwise, safe to create a new directed edge
tx.run(
"""
MATCH (a:Node {id: $node1, graph_id: $graph_id})
MATCH (b:Node {id: $node2, graph_id: $graph_id})
MERGE (a)-[r:RELATION {type: $rel_type}]->(b)
SET r.weight = $weight
""",
node1=node1,
node2=node2,
graph_id=self.current_graph_id,
rel_type=relationship_type,
weight=weight
)
print(
f"Added edge between '{node1}' and '{node2}' in graph "
f"'{self.current_graph_id}' (type='{relationship_type}', weight={weight})"
)
except Exception as e:
print(f"Error adding edge between '{node1}' and '{node2}': {str(e)}")
raise
def edge_exists(self, node1: str, node2: str) -> bool:
"""Check if an edge exists between two nodes."""
try:
with self.transaction() as tx:
result = tx.run(
"""
MATCH (a:Node {id: $node1})-[r:RELATION]-(b:Node {id: $node2})
RETURN COUNT(r) as count
""",
node1=node1,
node2=node2
)
return result.single()["count"] > 0
except Exception as e:
print(f"Error checking edge existence between {node1} and {node2}: {str(e)}")
raise
def graph_exists(self) -> bool:
"""Check if a graph exists in Neo4j."""
try:
with self.transaction() as tx:
result = tx.run("""
MATCH (n:Node)
RETURN count(n) > 0 as has_nodes
""")
return result.single()["has_nodes"]
except Exception as e:
print(f"Error checking graph existence: {str(e)}")
raise
def get_graphs(self) -> list:
"""Get detailed information about all existing graphs and their nodes."""
try:
with self.transaction() as tx:
result = tx.run(
"""
MATCH (g:Graph)
OPTIONAL MATCH (n:Node {graph_id: g.id})-[r:RELATION]->(:Node)
WITH g, collect(DISTINCT n) AS nodes, collect(DISTINCT r) AS rels
RETURN {
graph_id: g.id,
created: g.created,
updated: g.updated,
node_count: size(nodes),
edge_count: size(rels),
nodes: [node IN nodes | {
id: node.id,
query: node.query,
data: node.data,
role: node.role,
pagerank: node.pagerank
}]
} as graph_info
ORDER BY g.created DESC
"""
)
return list(result)
except Exception as e:
print(f"Error getting graphs: {str(e)}")
raise
def select_graph(self, graph_id: str) -> bool:
"""Select a specific graph as the current working graph."""
try:
with self.transaction() as tx:
result = tx.run("""
MATCH (g:Graph {id: $graph_id})
RETURN g
""", graph_id=graph_id)
if result.single():
self.current_graph_id = graph_id
return True
return False
except Exception as e:
print(f"Error selecting graph: {str(e)}")
raise
def create_new_graph(self) -> str:
"""Create a new graph instance and its ID."""
try:
with self.transaction() as tx:
graph_id = str(uuid.uuid4())
tx.run("""
CREATE (g:Graph {
id: $graph_id,
created: datetime(),
updated: datetime()
})
""", graph_id=graph_id)
self.current_graph_id = graph_id
except Exception as e:
print(f"Error creating new graph: {str(e)}")
raise
def load_graph(self, node_id: str) -> bool:
"""Load an existing graph structure from Neo4j based on node ID."""
# Helper function to safely extract number from node ID
def extract_number(node_id: str) -> int:
try:
# Extract all digits from the string
num_str = ''.join(filter(str.isdigit, node_id))
return int(num_str) if num_str else 0
except ValueError:
print(f"Warning: Could not extract number from node ID: {node_id}")
return 0
try:
with self.driver.session() as session:
# Start transaction
tx = session.begin_transaction()
try:
# Get all related nodes and relationships
result = tx.run("""
MATCH path = (n:Node)-[r:RELATION*0..]->(m:Node)
WHERE n.id = $node_id
RETURN DISTINCT n, r, m,
length(path) as depth,
[rel in r | type(rel)] as rel_types,
[rel in r | rel.weight] as weights
""", node_id=node_id)
# Reset internal state
self.node_counter = 0
self.sub_node_counter = 0
self.cross_connections.clear()
# Track processed nodes to avoid duplicates
processed_nodes = set()
# Process results
for record in result:
# Update counters based on node patterns
if record["n"]["id"] not in processed_nodes:
node_id = record["n"]["id"]
if "SQ" in node_id:
current_num = extract_number(node_id)
self.node_counter = max(self.node_counter, current_num)
elif "SSQ" in node_id:
current_num = extract_number(node_id)
self.sub_node_counter = max(self.sub_node_counter, current_num)
processed_nodes.add(node_id)
if record["m"]["id"] not in processed_nodes:
node_id = record["m"]["id"]
if "SQ" in node_id:
current_num = extract_number(node_id)
self.node_counter = max(self.node_counter, current_num)
elif "SSQ" in node_id:
current_num = extract_number(node_id)
self.sub_node_counter = max(self.sub_node_counter, current_num)
processed_nodes.add(node_id)
# Increment counters for next use
self.node_counter += 1
self.sub_node_counter += 1
# Track cross-connections
result = tx.run("""
MATCH (n:Node)-[r:RELATION]->(m:Node)
WHERE r.type = 'logical'
RETURN n.id as source, m.id as target
""")
for record in result:
connection = tuple(sorted([record["source"], record["target"]]))
self.cross_connections.add(connection)
tx.commit()
print(f"Successfully loaded graph. Current counters - Node: {self.node_counter}, Sub: {self.sub_node_counter}")
return True
except Exception as e:
tx.rollback()
print(f"Transaction error while loading graph: {str(e)}")
return False
except Exception as e:
print(f"Error loading graph: {str(e)}")
return False
async def modify_graph(self, new_query: str, similar_node_id: str, session_id: str = None):
"""Modify an existing graph structure by integrating a new query."""
# Inner function to add a new node as a sibling
async def add_as_sibling(node_id: str, query: str):
with self.transaction() as tx:
result = tx.run("""
MATCH (n:Node)<-[r:RELATION]-(parent:Node)
WHERE n.id = $node_id
RETURN parent.id as parent_id,
parent.query as parent_query,
r.type as rel_type
""", node_id=node_id)
parent_data = result.single()
if not parent_data:
raise ValueError(f"No parent found for node {node_id}")
if "SQ" in node_id:
self.node_counter += 1
new_node_id = f"SQ{self.node_counter}"
else:
self.sub_node_counter += 1
new_node_id = f"SSQ{self.sub_node_counter}"
self.add_node(
node_id=new_node_id,
query=query,
role="independent"
)
self.add_edge(
parent_data["parent_id"],
new_node_id,
relationship_type=parent_data["rel_type"]
)
return new_node_id
# Inner function to add a new node as a child
async def add_as_child(node_id: str, query: str):
if "SQ" in node_id:
self.sub_node_counter += 1
new_node_id = f"SSQ{self.sub_node_counter}"
else:
self.node_counter += 1
new_node_id = f"SQ{self.node_counter}"
self.add_node(
node_id=new_node_id,
query=query,
role="dependent"
)
self.add_edge(
node_id,
new_node_id,
relationship_type="logical"
)
return new_node_id
# Inner function to collect context from existing graph nodes
def collect_graph_context() -> list:
try:
with self.transaction() as tx:
# Get all nodes except root, ordered by depth and ID to maintain hierarchy
result = tx.run("""
MATCH (n:Node)
WHERE n.id <> $root_id AND n.graph_id = $graph_id
WITH n
ORDER BY
CASE
WHEN n.id STARTS WITH 'SQ' THEN 1
WHEN n.id STARTS WITH 'SSQ' THEN 2
ELSE 3
END,
n.id
RETURN COLLECT({
id: n.id,
query: n.query,
role: n.role
}) as nodes
""", root_id=self.root_node_id, graph_id=self.current_graph_id)
nodes = result.single()["nodes"]
if not nodes:
return []
# Group nodes by hierarchy level
level_queries = {}
current_sq = None
for node in nodes:
node_id = node["id"]
if node_id.startswith("SQ"):
current_sq = node_id
if current_sq not in level_queries:
level_queries[current_sq] = {
"originalquery": node["query"],
"subqueries": []
}
# Add the SQ node itself as a sub-query
level_queries[current_sq]["subqueries"].append({
"subquery": node["query"],
"role": node["role"],
"dependson": [] # Dependencies will be added below
})
elif node_id.startswith("SSQ") and current_sq:
level_queries[current_sq]["subqueries"].append({
"subquery": node["query"],
"role": node["role"],
"dependson": [] # Dependencies will be added below
})
# Add dependency information
for sq_id, query_data in level_queries.items():
for i, sub_query in enumerate(query_data["subqueries"]):
# Get dependencies for this sub_query
deps = tx.run("""
MATCH (n:Node {query: $node_query})-[r:RELATION {type: 'logical'}]->(m:Node)
WHERE n.graph_id = $graph_id
RETURN COLLECT(m.query) as dependencies
""", node_query=sub_query["subquery"], graph_id=self.current_graph_id)
dep_queries = deps.single()["dependencies"]
if dep_queries:
# Find indices of dependent queries
curr_deps = []
prev_deps = []
for dep_query in dep_queries:
# Check current level dependencies
curr_idx = next(
(idx for idx, sq in enumerate(query_data["subqueries"])
if sq["subquery"] == dep_query),
None
)
if curr_idx is not None:
curr_deps.append(curr_idx)
else:
# Check previous level dependencies
for prev_idx, prev_data in enumerate(level_queries.values()):
if dep_query in [sq["subquery"] for sq in prev_data["subqueries"]]:
prev_deps.append(prev_idx)
break
query_data["subqueries"][i]["dependson"] = [prev_deps, curr_deps]
# Convert to list maintaining order
return list(level_queries.values())
except Exception as e:
print(f"Error collecting graph context: {str(e)}")
raise
try:
# Get the role and other metadata of the similar node
with self.transaction() as tx:
result = tx.run("""
MATCH (n:Node {id: $node_id})
RETURN n.role as role,
n.query as query,
EXISTS((n)<-[:RELATION]-()) as has_parent
""", node_id=similar_node_id)
node_data = result.single()
if not node_data:
raise Exception(f"Node {similar_node_id} not found")
# Collect context from existing graph
context = collect_graph_context()
# Determine modification strategy
if node_data["role"] == "independent":
# Add as sibling if has parent, else as child
if node_data["has_parent"]:
new_node_id = await add_as_sibling(similar_node_id, new_query)
else:
new_node_id = await add_as_child(similar_node_id, new_query)
else:
# Add as child for dependent or pre-requisite nodes
new_node_id = await add_as_child(similar_node_id, new_query)
# Recursively build subgraph for new node if needed
await self.build_graph(
query=new_query,
parent_node_id=new_node_id,
depth=1 if "SQ" in new_node_id else 2,
context=context, # Pass the collected context
session_id=session_id
)
except Exception as e:
print(f"Error modifying graph: {str(e)}")
raise
async def build_graph(self, query: str, data: str = None, parent_node_id: str = None,
depth: int = 0, threshold: float = 0.8, recurse: bool = True,
context: list = None, session_id: str = None, max_tokens_allowed: int = 128000):
"""Build a new graph structure in Neo4j."""
async def process_node(self, node_id: str, sub_query: str,
session_id: str, future: asyncio.Future,
depth=depth, max_tokens_allowed=max_tokens_allowed):
"""Process a node asynchronously."""
try:
# Generate an optimized search query
optimized_query = await self.search_engine.generate_optimized_query(sub_query)
# Search for the sub-query
results = await self.search_engine.search(
query=optimized_query,
num_results=10,
exclude_filetypes=["pdf"]
)
# Emit event with the raw results
await self.emit_event("search_results_fetched", {
"node_id": node_id,
"sub_query": sub_query,
"optimized_query": optimized_query,
"search_results": results
})
# Filter the URLs based on the query
filtered_urls = await self.search_engine.filter_urls(
sub_query,
"extensive research dynamic structure",
results
)
# Emit an event with the filtered URLs
await self.emit_event("search_results_filtered", {
"node_id": node_id,
"sub_query": sub_query,
"filtered_urls": filtered_urls
})
# Get the URLs
urls = [result.get('link', 'No URL') for result in filtered_urls]
# Fetch URL contents
search_contents = await self.custom_crawler.fetch_page_contents(
urls,
sub_query,
session_id=session_id,
max_attempts=1,
timeout=30
)
# Emit an event with the fetched contents
await self.emit_event("search_contents_fetched", {
"node_id": node_id,
"sub_query": sub_query,
"contents": search_contents
})
# Format the contents
contents = ""
for k, content in enumerate(search_contents, 1):
if isinstance(content, Exception):
print(f"Error fetching content: {content}")
elif content:
contents += f"Document {k}:\n{content}\n\n"
if len(contents.strip()) > 0:
if depth == 0:
# Emit an event to indicate the completion of sub-query processing
await self.emit_event("sub_query_processed", {
"node_id": node_id,
"sub_query": sub_query,
"contents": contents
})
# Chunk the contents if it exceeds the token limit
token_count = self.llm.get_num_tokens(contents)
if token_count > max_tokens_allowed:
contents = await self.chunking.chunker(
text=contents,
query=sub_query,
max_tokens=max_tokens_allowed
)
print(f"Number of tokens in the answer: {token_count}")
print(f"Number of tokens in the content: {self.llm.get_num_tokens(contents)}")
else:
if depth == 0:
# Emit an event to indicate the failure of sub-query processing
await self.emit_event("sub_query_failed", {
"node_id": node_id,
"sub_query": sub_query,
"contents": contents
})
# Update node with data atomically
with self.transaction() as tx:
tx.run(
"""
MATCH (n:Node {id: $node_id})
SET n.data = $data
""",
node_id=node_id,
data=contents
)
# Set the result in the future
future.set_result(contents)
except Exception as e:
print(f"Error processing node {node_id}: {str(e)}")
future.set_exception(e)
raise
async def process_dependent_node(self, node_id: str, sub_query: str, depth, dep_futures: list, future):
"""Process a dependent node asynchronously."""
try:
loop = asyncio.get_running_loop()
# Wait for dependencies
dep_data = [await f for f in dep_futures]
# Modify query based on dependencies
modified_query = await self.query_processor.modify_query(
sub_query,
dep_data
)
# Generate new embedding for modified query
embedding = await loop.run_in_executor(
self.executor,
self.model.encode,
modified_query
)
# Update node query and embedding atomically
with self.transaction() as tx:
tx.run(
"""
MATCH (n:Node {id: $node_id})
SET n.query = $modified_query,
n.embedding = $embedding
""",
node_id=node_id,
modified_query=modified_query,
embedding=embedding.tolist()
)
# Process the modified node
try:
if not future.done():
await process_node(
self, node_id, modified_query, session_id, future, depth, max_tokens_allowed
)
except Exception as e:
if not future.done():
future.set_exception(e)
raise
except Exception as e:
print(f"Error processing dependent node {node_id}: {str(e)}")
if not future.done():
future.set_exception(e)
raise
def create_cross_connections(self, node_id=None, depth=None, role=None):
"""Create cross connections based on dependencies."""
try:
# Get all logical relationships
relationships = self.get_node_relationships(
node_id=node_id,
depth=depth,
role=role,
relationship_type='logical'
)
for current_node_id, edges in relationships.items():
# Get node role
with self.transaction() as tx:
result = tx.run(
"MATCH (n:Node {id: $node_id}) RETURN n.role as role",
node_id=current_node_id
)
node_data = result.single()
if not node_data or not node_data["role"]:
continue
node_role = node_data["role"].lower()
# Only process dependent nodes
if node_role == 'dependent':
# Process incoming edges (dependencies)
for source_id, target_id, edge_data in edges['in_edges']:
if not source_id or source_id == self.root_node_id:
continue
# Create connection key
connection = tuple(sorted([current_node_id, source_id]))
# Add cross-connection if not exists
if connection not in self.cross_connections:
if not self.edge_exists(source_id, current_node_id):
print(f"Adding cross-connection edge between {source_id} and {current_node_id}")
self.add_edge(
source_id,
current_node_id,
weight=edge_data.get('weight', 1.0),
relationship_type='logical'
)
self.cross_connections.add(connection)
# Process outgoing edges (children)
for source_id, target_id, edge_data in edges['out_edges']:
if not target_id or target_id == self.root_node_id:
continue
# Create connection key
connection = tuple(sorted([current_node_id, target_id]))
# Add cross-connection if not exists
if connection not in self.cross_connections:
if not self.edge_exists(current_node_id, target_id):
print(f"Adding cross-connection edge between {current_node_id} and {target_id}")
self.add_edge(
current_node_id,
target_id,
weight=edge_data.get('weight', 1.0),
relationship_type='logical'
)
self.cross_connections.add(connection)
except Exception as e:
print(f"Error creating cross connections: {str(e)}")
raise
# Main build_graph implementation
# Limit recursion depth
if depth > 1:
return
# Initialize context if not provided
if context is None:
context = []
# Dictionary to keep track of node data and their futures
node_data_futures = {}
if parent_node_id is None:
# If no parent node, this is the root (original query)
self.add_node(self.root_node_id, query, data)
parent_node_id = self.root_node_id
# Get the query intent
intent = await self.query_processor.get_query_intent(query)
if depth == 0:
# Decompose the query into sub-queries
response_data, sub_queries, roles, dependencies = \
await self.query_processor.decompose_query_with_dependencies(query, intent)
else:
# Decompose the sub-query into sub-sub-queries with past context
response_data, sub_queries, roles, dependencies = \
await self.query_processor.decompose_query_with_dependencies(
query,
intent,
context
)
# Add current query data to context for next iteration
if response_data:
context.append(response_data)
# If no further decomposition is possible, sub_queries will contain only the original query
if len(sub_queries) > 1 and sub_queries[0] != query:
sub_query_ids = []
pre_req_nodes = {}
# Create the structure (nodes and edges) of the graph at the current level
for idx, (sub_query, role, dependency) in enumerate(zip(sub_queries, roles, dependencies)):
# If this is the sub-queries level,
# fire the event, letting the callback know about the sub-query
if depth == 0:
await self.emit_event(
"sub_query_created",
{
"depth": depth,
"sub_query": sub_query,
"role": role,
"dependency": dependency,
"parent_node_id": parent_node_id,
}
)
# Generate a unique ID for the sub-query
if depth == 0:
self.node_counter += 1
sub_node_id = f"SQ{self.node_counter}"
else:
self.sub_node_counter += 1
sub_node_id = f"SSQ{self.sub_node_counter}"
# Add the node ID to the list of sub-query IDs
sub_query_ids.append(sub_node_id)
# Add the node to the graph but without a data
self.add_node(node_id=sub_node_id, query=sub_query, role=role)
# Create future for the node
future = asyncio.Future()
node_data_futures[sub_node_id] = future
if role.lower() in ('pre-requisite', 'prerequisite'):
pre_req_nodes[idx] = sub_node_id
# Determine how to add edges based on the role
if role.lower() in ('pre-requisite', 'prerequisite', 'independent'):
# Pre-requisite and Independent nodes connect directly to the parent
self.add_edge(parent_node_id, sub_node_id, relationship_type='hierarchical')
elif role.lower() == 'dependent':
if isinstance(dependency, list) and (
(len(dependency) == 2 and all(isinstance(d, list) for d in dependency))
):
print(f"Dependency: {dependency}")
# Handle previous query dependencies
prev_deps, current_deps = dependency
# Handle previous query dependencies
if context and prev_deps not in [None, []]:
for dep_idx in prev_deps:
if dep_idx is not None:
# Find the corresponding context data
for context_data in context:
if context_data and 'subqueries' in context_data:
if dep_idx < len(context_data['subqueries']):
# Get the query from context
sub_query_data = context_data['subqueries'][dep_idx]
if isinstance(sub_query_data, dict) and 'subquery' in sub_query_data:
dep_query = sub_query_data['subquery']
# Find matching nodes
matching_nodes = self.find_nodes_by_properties(query=dep_query)
# Get the best matching node ID and score
if matching_nodes not in [None, []]:
dep_node_id = matching_nodes[0].get('node_id')
score = matching_nodes[0].get('score', 0)
if score >= 0.9:
self.add_edge(dep_node_id, sub_node_id, relationship_type='logical')
# Add edges from current query dependencies
if current_deps not in [None, []]:
for dep_idx in current_deps:
if dep_idx < len(sub_queries):
dep_node_id = sub_query_ids[dep_idx]
self.add_edge(dep_node_id, sub_node_id, relationship_type='logical')
else:
# Dependency is incorrect
raise ValueError(f"Invalid dependency index: {dep_idx}")
elif len(dependency) > 0:
for dep_idx in dependency:
if dep_idx < len(sub_queries):
# Get the node ID of the dependency
dep_node_id = sub_query_ids[dep_idx]
# Add an edge from the dependency to the current sub-query
self.add_edge(dep_node_id, sub_node_id, relationship_type='logical')
else:
raise ValueError(f"Invalid dependency index: {dep_idx}")
else:
# Dependency is incorrect or empty
raise ValueError(f"Invalid dependency: {dependency}")
else:
# Handle any unexpected roles
raise ValueError(f"Unexpected role: {role}")
# Proceed to process the nodes
tasks = []
# Process pre-requisite and independent nodes concurrently
for idx in range(len(sub_queries)):
node_id = sub_query_ids[idx]
future = node_data_futures[node_id]
if roles[idx].lower() in ('pre-requisite', 'prerequisite', 'independent'):
tasks.append(process_node(
self, node_id, sub_queries[idx], session_id, future, depth, max_tokens_allowed
))
# Process dependent nodes as soon as their dependencies are ready
for idx in range(len(sub_queries)):
node_id = sub_query_ids[idx]
future = node_data_futures[node_id]
if roles[idx].lower() == 'dependent':
dep_futures = []
if isinstance(dependencies[idx], list) and len(dependencies[idx]) == 2:
prev_deps, current_deps = dependencies[idx]
# Get futures from previous context dependencies
if context and prev_deps not in [None, []]:
for context_idx, context_data in enumerate(context):
# If prev_deps is a list, process the corresponding dependency
if isinstance(prev_deps, list) and context_idx < len(prev_deps):
context_dep = prev_deps[context_idx]
if context_dep is not None:
if context_data and 'subqueries' in context_data:
if context_dep < len(context_data['subqueries']):
sub_query_data = context_data['subqueries'][context_dep]
if isinstance(sub_query_data, dict) and 'subquery' in sub_query_data:
dep_query = sub_query_data['subquery']
# Find matching nodes
matching_nodes = self.find_nodes_by_properties(query=dep_query)
if matching_nodes not in [None, []]:
# Get the exact matching node ID and score
dep_node_id = matching_nodes[0].get('node_id', None)
score = float(matching_nodes[0].get('score', 0))
if score == 1.0 and dep_node_id in node_data_futures:
dep_futures.append(node_data_futures[dep_node_id])
# If prev_deps is an integer, process it for the current context
elif isinstance(prev_deps, int):
if prev_deps < len(context_data['subqueries']):
sub_query_data = context_data['subqueries'][prev_deps]
if isinstance(sub_query_data, dict) and 'subquery' in sub_query_data:
dep_query = sub_query_data['subquery']
# Find matching nodes
matching_nodes = self.find_nodes_by_properties(query=dep_query)
if matching_nodes not in [None, []]:
# Get the exact matching node ID and score
dep_node_id = matching_nodes[0].get('node_id', None)
score = matching_nodes[0].get('score', 0)
if score == 1.0 and dep_node_id in node_data_futures:
dep_futures.append(node_data_futures[dep_node_id])
# Get futures from current dependencies
if current_deps not in [None, []]:
current_deps_list = [current_deps] if isinstance(current_deps, int) else current_deps
for dep_idx in current_deps_list:
if dep_idx < len(sub_queries):
dep_node_id = sub_query_ids[dep_idx]
if dep_node_id in node_data_futures:
dep_futures.append(node_data_futures[dep_node_id])
# Start coroutine to wait for dependencies and then process node
tasks.append(process_dependent_node(
self, node_id, sub_queries[idx], depth, dep_futures, future
))
# Emit an event to indicate the start of the search process
if depth == 0:
await self.emit_event("search_process_started", {
"depth": depth,
"sub_queries": sub_queries,
"roles": roles
})
# Wait for all tasks to complete
await asyncio.gather(*tasks)
# Recurse into sub-queries if needed
if recurse:
recursion_tasks = []
for idx, sub_query in enumerate(sub_queries):
try:
sub_node_id = sub_query_ids[idx]
recursion_tasks.append(
self.build_graph(
query=sub_query,
parent_node_id=sub_node_id,
depth=depth + 1,
threshold=threshold,
recurse=recurse,
context=context, # Pass the context
session_id=session_id
))
except Exception as e:
print(f"Failed to create recursion task for sub-query {sub_query}: {e}")
continue
# Only proceed if there are any recursion tasks
if recursion_tasks:
try:
await asyncio.gather(*recursion_tasks)
except Exception as e:
raise Exception(f"Error during recursive processing: {e}")
# Process completion tasks
if depth == 0:
print("Graph building complete, processing final tasks...")
# Create cross-connections
create_cross_connections(self)
print("All cross-connections have been created!")
# Add similarity-based edges
print(f"Adding similarity edges with threshold {threshold}")
all_nodes = []
with self.driver.session() as session:
result = session.run(
"MATCH (n:Node) WHERE n.id <> $root_id RETURN n.id as id",
root_id=self.root_node_id
)
all_nodes = [record["id"] for record in result]
for i, node1 in enumerate(all_nodes):
for node2 in all_nodes[i+1:]:
if not self.edge_exists(node1, node2):
self.add_edge_based_on_similarity_and_relevance(
node1, node2, query, threshold
)
async def process_graph(
self,
query: str,
data: str = None,
similarity_threshold: float = 0.8,
relevance_threshold: float = 0.7,
sub_sub_queries: bool = True,
session_id: str = None,
max_tokens_allowed: int = 128000
):
"""Process a query and manage graph creation/modification."""
# Inner function to check similarity between new query and existing queries in the graph
def check_query_similarity(new_query: str, similarity_threshold: float = 0.8) -> Dict[str, Any]:
if self.current_graph_id is None:
raise Exception("Error: No current graph ID. Cannot check query similarity.")
try:
# Get all existing queries of the current graph and their metadata from Neo4j
print(f"Retrieving existing queries and their metadata for graph {self.current_graph_id}")
with self.transaction() as tx:
result = tx.run("""
MATCH (n:Node)
WHERE n.graph_id IS NOT NULL
AND n.graph_id = $graph_id
RETURN n.id as id,
n.query as query,
n.role as role
""",
graph_id=self.current_graph_id
)
# Process results and calculate similarities
similarities = []
records = list(result) # Materialize results to avoid session timeout
if records == []: # No existing queries
return {"should_create_new": True}
for record in records:
# Skip if missing required data
if not all([record["query"]]):
continue
# Calculate query similarity
similarity = self.calculate_query_similarity(
new_query,
record["query"]
)
if similarity >= similarity_threshold:
similarities.append({
"node_id": record["id"],
"query": record["query"],
"score": similarity,
"role": record["role"]
})
# If no similar queries found
if similarities == []:
print(f"No similar queries found above threshold {similarity_threshold}")
return {"should_create_new": True}
# Find best match
best_match = max(similarities, key=lambda x: x["score"])
# Determine relationship type based on node ID pattern
rel_type = "root"
if "SSQ" in best_match["node_id"]:
rel_type = "sub-sub"
elif "SQ" in best_match["node_id"]:
rel_type = "sub"
return {
"most_similar_query": best_match["query"],
"similarity_score": best_match["score"],
"relationship_type": rel_type,
"node_id": best_match["node_id"],
"should_create_new": best_match["score"] < similarity_threshold
}
except Exception as e:
print(f"Error checking query similarity: {str(e)}")
raise
try:
# Check if a graph already exists
print("Checking for existing graphs...")
result = self.get_graphs()
graphs = list(result)
if graphs == []: # No existing graphs
print("No existing graphs found. Creating new graph.")
self.create_new_graph()
# Emit event for creating a new graph
await self.emit_event("graph_operation", {"operation_type": "creating_new_graph"})
await self.build_graph(
query=query,
data=data,
threshold=relevance_threshold,
recurse=sub_sub_queries,
session_id=session_id,
max_tokens_allowed=max_tokens_allowed
)
# Memory cleanup
gc.collect()
# Prune edges and update pagerank
self.prune_edges()
self.update_pagerank()
# Verify graph integrity and consistency
self.verify_graph_integrity()
self.verify_graph_consistency()
return
# Check similarity with existing root queries
max_similarity = 0
most_similar_graph = None
# First, consolidate nodes from graphs with same ID
consolidated_graphs = {}
for graph in graphs:
graph_info = graph.get("graph_info")
if not graph_info:
continue
graph_id = graph_info.get("graph_id")
if not graph_id:
continue
# Initialize or append nodes for this graph_id
if graph_id not in consolidated_graphs:
consolidated_graphs[graph_id] = {
"graph_id": graph_id,
"nodes": []
}
# Add nodes if they exist
if graph_info.get("nodes"):
consolidated_graphs[graph_id]["nodes"].extend(graph_info["nodes"])
# Now process the consolidated graphs
for graph_id, graph_data in consolidated_graphs.items():
nodes = graph_data["nodes"]
# Calculate similarity with each node's query
for node in nodes:
if node.get("query"): # Skip nodes without queries
similarity = self.calculate_query_similarity(
query,
node["query"]
)
if node.get("id").startswith("SQ"):
await self.emit_event("retrieved_sub_query", {
"sub_query": node["query"]
})
if similarity > max_similarity:
max_similarity = similarity
most_similar_graph = graph_id
if max_similarity >= similarity_threshold:
# Use existing graph
print(f"Found similar query with score {round(max_similarity, 2)}")
self.current_graph_id = most_similar_graph
if round(max_similarity, 2) == 1.0:
print("Loading and using existing graph")
# Emit event for loading an existing graph
await self.emit_event("graph_operation", {"operation_type": "loading_existing_graph"})
success = self.load_graph(self.root_node_id)
if not success:
raise Exception("Failed to load existing graph")
else:
# Check for node-level similarity
print("Checking for node-level similarity...")
similarity_info = check_query_similarity(
query,
similarity_threshold
)
if similarity_info["relationship_type"] in ["sub", "sub-sub"]:
print(f"Most Similar Query: {similarity_info['most_similar_query']}")
print("Modifying existing graph structure")
# Emit event for modifying the graph
await self.emit_event("graph_operation", {"operation_type": "modifying_existing_graph"})
await self.modify_graph(
query,
similarity_info["node_id"],
session_id=session_id
)
# Memory cleanup
gc.collect()
# Prune edges and update pagerank
self.prune_edges()
self.update_pagerank()
# Verify graph integrity and consistency
self.verify_graph_integrity()
self.verify_graph_consistency()
else:
# Create new graph
print(f"Creating new graph for query: {query}")
self.create_new_graph()
# Emit event for creating a new graph
await self.emit_event("graph_operation", {"operation_type": "creating_new_graph"})
await self.build_graph(
query=query,
data=data,
threshold=relevance_threshold,
recurse=sub_sub_queries,
session_id=session_id,
max_tokens_allowed=max_tokens_allowed
)
# Memory cleanup
gc.collect()
# Prune edges and update pagerank
self.prune_edges()
self.update_pagerank()
# Verify graph integrity and consistency
self.verify_graph_integrity()
self.verify_graph_consistency()
except Exception as e:
print(f"Error in process_graph: {str(e)}")
raise
def add_edge_based_on_similarity_and_relevance(self, node1_id: str, node2_id: str, query: str, threshold: float = 0.8):
"""Add edges based on node similarity and relevance."""
try:
with self.transaction() as tx:
# Get node data atomically
result = tx.run(
"""
MATCH (n1:Node {id: $node1_id})
WITH n1
MATCH (n2:Node {id: $node2_id})
RETURN n1.embedding as emb1, n1.data as data1,
n2.embedding as emb2, n2.data as data2
""",
node1_id=node1_id,
node2_id=node2_id
)
data = result.single()
if not data or not all([data["emb1"], data["emb2"], data["data1"], data["data2"]]):
return
# Calculate similarities and relevance
similarity = self.cosine_similarity(data["emb1"], data["emb2"])
query_relevance1 = self.calculate_relevance(query, data["data1"])
query_relevance2 = self.calculate_relevance(query, data["data2"])
node_relevance = self.calculate_relevance(data["data1"], data["data2"])
# Calculate weight
weight = (similarity + query_relevance1 + query_relevance2 + node_relevance) / 4
# Add edge if weight exceeds threshold
if weight >= threshold:
tx.run(
"""
MATCH (a:Node {id: $node1_id}), (b:Node {id: $node2_id})
MERGE (a)-[r:RELATION {type: 'similarity_and_relevance'}]->(b)
ON CREATE SET r.weight = $weight
ON MATCH SET r.weight = $weight
""",
node1_id=node1_id,
node2_id=node2_id,
weight=weight
)
print(f"Added edge between {node1_id} and {node2_id} with type similarity_and_relevance and weight {weight}")
except Exception as e:
print(f"Error in similarity edge creation between {node1_id} and {node2_id}: {str(e)}")
raise
def calculate_relevance(self, data1: str, data2: str) -> float:
"""Calculate relevance between two data."""
try:
if not data1 or not data2:
return 0.0
P, R, F1 = self.scorer.score([data1], [data2])
return F1.mean().item()
except Exception as e:
print(f"Error calculating relevance: {str(e)}")
return 0.0
def calculate_query_similarity(self, query1: str, query2: str) -> float:
"""Calculate similarity between two queries."""
try:
# Generate embeddings
embedding1 = self.model.encode(query1).tolist()
embedding2 = self.model.encode(query2).tolist()
# Calculate cosine similarity
return self.cosine_similarity(embedding1, embedding2)
except Exception as e:
print(f"Error calculating query similarity: {str(e)}")
return 0.0
def get_similarities_and_relevance(self, threshold: float = 0.8) -> list:
"""Get similarities and relevance between nodes."""
try:
with self.transaction() as tx:
# Get all nodes except root
result = tx.run(
"""
MATCH (n:Node)
WHERE n.id <> $root_id
RETURN n.id as id, n.embedding as embedding, n.data as data
""",
root_id=self.root_node_id
)
nodes = list(result)
similarities = []
# Calculate similarities between each pair
for i, node1 in enumerate(nodes):
for node2 in nodes[i + 1:]:
similarity = self.cosine_similarity(node1["embedding"], node2["embedding"])
relevance = self.calculate_relevance(node1["data"], node2["data"])
# Calculate weight
weight = (similarity + relevance) / 2
# Add to results if meets threshold
if weight >= threshold:
similarities.append({
'node1': node1["id"],
'node2': node2["id"],
'similarity': similarity,
'relevance': relevance,
'weight': weight
})
return similarities
except Exception as e:
print(f"Error getting similarities and relevance: {str(e)}")
return []
def get_node_relationships(self, node_id=None, depth=None, role=None, relationship_type=None):
"""Get relationships between nodes with filtering options."""
try:
with self.transaction() as tx:
# Build base query
cypher_query = """
MATCH (n:Node)
WHERE n.id <> $root_id
AND n.graph_id = $current_graph_id
"""
params = {
"root_id": self.root_node_id,
"current_graph_id": self.current_graph_id
}
# Add filters
if node_id:
cypher_query += " AND n.id = $node_id"
params["node_id"] = node_id
if role:
cypher_query += " AND n.role = $role"
params["role"] = role
if depth is not None:
cypher_query += " AND n.depth = $depth"
params["depth"] = depth
# First get outgoing relationships
cypher_query += """
WITH n
OPTIONAL MATCH (n)-[r1:RELATION]->(m1:Node)
WHERE m1.id <> $root_id
AND m1.graph_id = $current_graph_id
"""
# Add relationship type filter if specified
if relationship_type:
cypher_query += " AND r1.type = $rel_type"
params["rel_type"] = relationship_type
# Then get incoming relationships in a separate match
cypher_query += """
WITH n, collect({source: n.id, target: m1.id, weight: r1.weight, type: r1.type}) as out_edges
OPTIONAL MATCH (n)<-[r2:RELATION]-(m2:Node)
WHERE m2.id <> $root_id
AND m2.graph_id = $current_graph_id
"""
# Add same relationship type filter for incoming edges
if relationship_type:
cypher_query += " AND r2.type = $rel_type"
# Return both collections
cypher_query += """
RETURN n.id as node_id,
collect({source: m2.id, target: n.id, weight: r2.weight, type: r2.type}) as in_edges,
out_edges
"""
result = tx.run(cypher_query, params)
relationships = {}
for record in result:
node_id = record["node_id"]
relationships[node_id] = {
'in_edges': [(edge['source'], edge['target'], {
'weight': edge['weight'],
'type': edge['type']
}) for edge in record["in_edges"] if edge['source'] is not None],
'out_edges': [(edge['source'], edge['target'], {
'weight': edge['weight'],
'type': edge['type']
}) for edge in record["out_edges"] if edge['target'] is not None]
}
return relationships
except Exception as e:
print(f"Error getting node relationships: {str(e)}")
raise
def find_nodes_by_properties(self, query: str = None, embedding: list = None,
node_data: dict = None, similarity_threshold: float = 0.8) -> list:
"""Find nodes based on properties."""
try:
with self.transaction() as tx:
match_conditions = []
where_conditions = []
params = {}
# Build query conditions
if query:
where_conditions.append("n.query CONTAINS $node_query")
params["node_query"] = query
if node_data:
for key, value in node_data.items():
where_conditions.append(f"n.{key} = ${key}")
params[key] = value
# Construct the base query
cypher_query = "MATCH (n:Node)"
if where_conditions:
cypher_query += " WHERE " + " AND ".join(where_conditions)
cypher_query += " RETURN n"
result = tx.run(cypher_query, params)
matching_nodes = []
# Process results and calculate similarities
for record in result:
node = record["n"]
match_score = 0
matches = 0
# Score based on property matches
if query and query.lower() in node["query"].lower():
match_score += 1
matches += 1
# Score based on embedding similarity
if embedding and "embedding" in node:
similarity = self.cosine_similarity(embedding, node["embedding"])
if similarity >= similarity_threshold:
match_score += similarity
matches += 1
# Score based on node_data matches
if node_data:
data_matches = sum(1 for k, v in node_data.items()
if k in node and node[k] == v)
if data_matches > 0:
match_score += data_matches / len(node_data)
matches += 1
# Add to results if any match found
if matches > 0:
matching_nodes.append({
"node_id": node["id"],
"score": match_score / matches,
"data": dict(node)
})
# Sort by score
matching_nodes.sort(key=lambda x: x["score"], reverse=True)
return matching_nodes
except Exception as e:
print(f"Error finding nodes by properties: {str(e)}")
raise
def query_graph(self, query: str) -> str:
"""Query the graph in Neo4j for a specific query, collecting data from the entire relevant subgraph."""
try:
with self.transaction() as tx:
# Find the query node
query_node = tx.run("""
MATCH (n:Node {query: $node_query})
WHERE n.graph_id = $graph_id
RETURN n
""", node_query=query, graph_id=self.current_graph_id).single()
if not query_node:
raise ValueError(f"Query node not found for: {query}")
query_node_id = query_node['n']['id']
datas = []
# Get entire subgraph including all relationship types and independent nodes
subgraph_paths = tx.run("""
// First get the query node and all its connected paths
MATCH path = (n:Node {id: $node_id})-[r:RELATION*0..]->(m:Node)
WHERE n.graph_id = $graph_id
// Collect all nodes and relationships in these paths
WITH COLLECT(path) as paths
UNWIND paths as path
WITH DISTINCT path
// Get all nodes and relationships from the paths
WITH nodes(path) as nodes, relationships(path) as rels
// Calculate path weight considering all relationship types
WITH nodes, rels,
reduce(weight = 1.0, rel in rels |
CASE rel.type
WHEN 'logical' THEN weight * rel.weight * 1.2
WHEN 'hierarchical' THEN weight * rel.weight * 1.1
WHEN 'similarity_and_relevance' THEN weight * rel.weight * 0.9
ELSE weight * rel.weight
END
) as path_weight
// Unwind nodes to get individual records
UNWIND nodes as node
WITH DISTINCT node, path_weight
WHERE node.data IS NOT NULL
AND node.data <> '' // Ensure data is not empty
// Return ordered by weight and pagerank for better context flow
RETURN node.data as data,
path_weight,
node.role as role,
node.pagerank as pagerank
ORDER BY
CASE node.role
WHEN 'pre-requisite' THEN 3
WHEN 'independent' THEN 2
ELSE 1
END DESC,
path_weight DESC,
pagerank DESC
""", node_id=query_node_id, graph_id=self.current_graph_id)
# Collect data in the order they were returned (already optimally sorted)
for record in subgraph_paths:
data = record["data"]
if data and isinstance(data, str):
datas.append(data.strip())
# If no data are found, return an empty string
if datas == []:
print(f"No data found for: {query}")
return ""
# Return combined data
return "\n\n".join([f"Data {i+1}:\n{data}" for i, data in enumerate(datas)])
except Exception as e:
print(f"Error querying graph for specific query: {str(e)}")
raise
def prune_edges(self, max_edges: int = 1000):
"""Prune excess edges while preserving node data."""
try:
with self.transaction() as tx:
try:
# Count current edges
result = tx.run(
"""
MATCH (a:Node {graph_id: $graphID})-[r:RELATION]->(b:Node {graph_id: $graphID})
RETURN count(r) AS count
""",
graphID=self.current_graph_id
)
current_edges = result.single()["count"]
if current_edges > max_edges:
# Mark edges to keep
tx.run(
"""
MATCH (a:Node {graph_id: $graphID})-[r:RELATION]->(b:Node {graph_id: $graphID})
WITH r
ORDER BY r.weight DESC
LIMIT $max_edges
SET r:KEEP
""",
graphID=self.current_graph_id,
max_edges=max_edges
)
# Remove excess edges
tx.run(
"""
MATCH (a:Node {graph_id: $graphID})-[r:RELATION]->(b:Node {graph_id: $graphID})
WHERE NOT r:KEEP
DELETE r
""",
graphID=self.current_graph_id
)
# Remove temporary label
tx.run(
"""
MATCH (a:Node {graph_id: $graphID})-[r:KEEP]->(b:Node {graph_id: $graphID})
REMOVE r:KEEP
""",
graphID=self.current_graph_id
)
tx.commit()
print(f"Pruned edges. Kept top {max_edges} edges by weight.")
except Exception as e:
tx.rollback()
raise e
except Exception as e:
print(f"Error pruning edges: {str(e)}")
raise
def update_pagerank(self):
"""Update PageRank values using Neo4j's graph algorithms."""
if not self.current_graph_id:
print("No current graph selected. Cannot compute PageRank.")
return
try:
with self.transaction() as tx:
# Create graph projection with weighted relationships
tx.run(
"""
CALL gds.graph.project.cypher(
'graphProjection',
'MATCH (n:Node) WHERE n.graph_id = $myParam RETURN id(n) AS id',
'MATCH (n:Node)-[r:RELATION]->(m:Node)
WHERE n.graph_id = $myParam AND m.graph_id = $myParam
RETURN id(n) AS source,
id(m) AS target,
CASE r.type
WHEN "logical" THEN r.weight * 2
ELSE r.weight
END AS weight',
{ parameters: { myParam: $graphId } }
)
""",
graphId=self.current_graph_id
)
# Run PageRank with relationship weights
tx.run(
"""
CALL gds.pageRank.write(
'graphProjection',
{
relationshipWeightProperty: 'weight',
writeProperty: 'pagerank',
maxIterations: 20,
dampingFactor: 0.85,
concurrency: 4
}
)
"""
)
# Clean up projection
tx.run(
"""
CALL gds.graph.drop('graphProjection')
"""
)
print("PageRank updated successfully")
except Exception as e:
print(f"Error updating PageRank: {str(e)}")
raise
def display_graph(self, query: str):
"""Display the graph"""
try:
with self.transaction() as tx:
# 1. Find the graph_id(s) of the node using the provided query
cypher_query = """
MATCH (n:Node)
WHERE n.query = $node_query
RETURN COLLECT(DISTINCT n.graph_id) AS graph_ids
"""
result = tx.run(cypher_query, node_query=query)
graph_ids = result.single().get("graph_ids", [])
if not graph_ids:
print("No graph found for the given query.")
return
# Create the PyVis network once, so we can add all data to it:
net = Network(
height="600px",
width="100%",
directed=True,
bgcolor="#222222",
font_color="white"
)
# Disable physics initially
net.options = {"physics": {"enabled": False}}
all_nodes = set()
all_edges = []
for graph_id in graph_ids:
# 2. Fetch Graph Data for this graph_id
result = tx.run(f"MATCH (n)-[r]->(m) WHERE n.graph_id = '{graph_id}' RETURN n, r, m")
for record in result:
source_node = record["n"]
target_node = record["m"]
relationship = record["r"]
source_id = source_node.get("id")
target_id = target_node.get("id")
# Build a descriptive tooltip for each node
source_tooltip = (
f"Query: {source_node.get('query', 'N/A')}"
)
target_tooltip = (
f"Query: {target_node.get('query', 'N/A')}"
)
# Add source node if not already in the set
if source_id not in all_nodes:
net.add_node(
source_id,
label=source_id,
title=source_tooltip,
size=20,
color="#00cc66"
)
all_nodes.add(source_id)
# Add target node if not already in the set
if target_id not in all_nodes:
net.add_node(
target_id,
label=target_id,
title=target_tooltip,
size=20,
color="#00cc66"
)
all_nodes.add(target_id)
# Add edge
all_edges.append({
"from": source_id,
"to": target_id,
"label": relationship.type,
})
# Add all edges
for edge in all_edges:
net.add_edge(
edge["from"],
edge["to"],
title=edge["label"],
color="#cccccc"
)
# 4. Enable improved layout and dragNodes
net.options["layout"] = {"improvedLayout": True}
net.options["interaction"] = {"dragNodes": True}
# 5. Save to a temporary file, read it, then remove that file
net.save_graph("temp_graph.html")
with open("temp_graph.html", "r", encoding="utf-8") as f:
html_str = f.read()
os.remove("temp_graph.html") # Clean up the temp file
return html_str
except Exception as e:
print(f"Error displaying graph: {str(e)}")
raise
def verify_graph_integrity(self):
"""Verify and fix graph integrity issues."""
try:
with self.transaction() as tx:
# Check for orphaned nodes
orphaned = tx.run(
"""
MATCH (n:Node {graph_id: $graph_id})
WHERE NOT (n)-[:RELATION]-()
RETURN n.id as node_id
""",
graph_id=self.current_graph_id
).values()
if orphaned:
print(f"Found orphaned nodes: {orphaned}")
# Check for invalid edges
invalid_edges = tx.run(
"""
MATCH (a:Node)-[r:RELATION]->(b:Node)
WHERE a.graph_id = $graph_id
AND (b.graph_id <> $graph_id OR b.graph_id IS NULL)
RETURN a.id as from_id, b.id as to_id
""",
graph_id=self.current_graph_id
).values()
if invalid_edges:
print(f"Found invalid edges: {invalid_edges}")
# Optionally fix issues
tx.run(
"""
MATCH (a:Node)-[r:RELATION]->(b:Node)
WHERE a.graph_id = $graph_id
AND (b.graph_id <> $graph_id OR b.graph_id IS NULL)
DELETE r
""",
graph_id=self.current_graph_id
)
print("Graph integrity verified successfully")
return True
except Exception as e:
print(f"Error verifying graph integrity: {str(e)}")
raise
def verify_graph_consistency(self):
"""Verify consistency of the Neo4j graph."""
try:
with self.driver.session() as session:
# Check for nodes without required properties
missing_props = session.run("""
MATCH (n:Node)
WHERE n.id IS NULL OR n.query IS NULL
RETURN count(n) as count
""")
if missing_props.single()["count"] > 0:
raise ValueError("Found nodes with missing required properties")
# Check for relationship consistency
invalid_rels = session.run("""
MATCH ()-[r:RELATION]->()
WHERE r.type IS NULL OR r.weight IS NULL
RETURN count(r) as count
""")
if invalid_rels.single()["count"] > 0:
raise ValueError("Found relationships with missing required properties")
print("Graph consistency verified successfully")
return True
except Exception as e:
print(f"Error verifying graph consistency: {str(e)}")
raise
async def close(self):
"""Properly cleanup all resources."""
try:
# Shutdown executor
if hasattr(self, 'executor'):
self.executor.shutdown(wait=True)
# Close Neo4j driver
if hasattr(self, 'driver'):
self.driver.close()
# Cleanup crawler resources and browser contexts
if hasattr(self, 'crawler'):
await asyncio.shield(self.crawler.cleanup_expired_sessions())
await asyncio.shield(self.crawler.cleanup_browser_context(self.session_id))
except Exception as e:
print(f"Error during cleanup: {e}")
@staticmethod
def cosine_similarity(v1: List[float], v2: List[float]) -> float:
"""Calculate cosine similarity between two vectors."""
try:
v1_array = np.array(v1)
v2_array = np.array(v2)
return np.dot(v1_array, v2_array) / (np.linalg.norm(v1_array) * np.linalg.norm(v2_array))
except Exception as e:
print(f"Error calculating cosine similarity: {str(e)}")
return 0.0
if __name__ == "__main__":
import os
from dotenv import load_dotenv
from src.reasoning.reasoner import Reasoner
from src.evaluation.evaluator import Evaluator
load_dotenv()
graph_search = Neo4jGraphRAG(num_workers=24)
evaluator = Evaluator()
reasoner = Reasoner()
async def test_graph_search():
# Sample data for testing
queries = [
"""In the context of global economic recovery and energy security concerns, provide an in-depth comparative assessment of the renewable energy policies among G20 countries.
Specifically, examine how short-term economic stimulus measures intersect with long-term decarbonization commitments, including:
1. Carbon pricing mechanisms
2. Subsidies for emerging technologies (such as green hydrogen and battery storage)
3. Cross-border climate finance initiatives
Highlight the unique challenges faced by both advanced and emerging economies in addressing:
1. Energy poverty
2. Supply chain disruptions
3. Geopolitical tensions (e.g., the Russia-Ukraine conflict)
Discuss how these factors influence policy effectiveness, and evaluate the degree to which each country is on track to meet—or exceed—its Paris Agreement targets.
Note any significant policy gaps, regional collaborations, or innovative best practices.
Lastly, provide a forward-looking perspective on how these renewable energy strategies may evolve over the next decade, considering:
1. Technological breakthroughs
2. Global market trends
3. Potential climate-related disasters
Present your analysis as a detailed, well-formatted report.""",
"""Analyse the impact of 'hot-money' on the value of Indian Rupee and answer the following questions:-
1. How does it affect the exchange rate?
2. How can it be mitigated/eliminated?
3. Why is it a problem?
4. What are the consequences?
5. What are the alternatives?
- Evaluate the alternatives for pros and cons.
- Evaluate the impact of alternatives on the exchange rate.
- How can they be implemented?
- What are the consequences of each alternative?
- Evaluate the feasibility of the alternatives.
- Pick top 5 alternatives and justify your choices in detail.
6. What are the implications for the Indian economy? Furthermore:-
- Evaluate the impact of the chosen alternatives on the Indian economy.""",
"""Inflation has been an intrinsic past of human civilization since the very beginning. Answer the following questions:-
1. How true is the above statement?
2. What are the causes of inflation?
3. What are the consequences of inflation?
4. Can we completely eliminate inflation?""",
"""Perform a detailed comparison between the ancient Greece and Roman civilizations.
1. What were the key differences between the two civilizations?
- Evaluate the differences in governance, society, and culture
- Evaluate the differences in economy, trade, and military
- Evaluate the differences in technology and infrastructure
2. What were the similarities between the two civilizations?
- Evaluate the similarities in governance, society, and culture
- Evaluate the similarities in economy, trade, and military
- Evaluate the similarities in technology and infrastructure
3. How did these two civilizations influence each other?
- Evaluate the influence of one civilization on the other
4. How did these two civilizations influence the modern world?
5. Was there another civilization that influenced these two? If yes, how?""",
"""Evaluate the long-term effects of colonialism on economic development in Asia:-
1. Include case studies of at least five different countries
2. Analyze how these effects differ based on colonial power, time of independence, and resource distribution
- Evaluate the impact of colonialism on the economy of the country
- Evaluate the impact of colonialism on the economy of the region
- Evaluate the impact of colonialism on the economy of the world
3. How do these effects compare to Africa?"""
]
follow_on_queries = [
"How is 'hot-money' related to the current economic situation in India?",
"What is inflation?",
"Did ancient Greece and Rome have any impact on modern democracy? If yes, how?",
"Did colonialism have any impact on the trade between Africa and Asia, both in colonial and post-colonial times? If yes, how?"
]
query = queries[2]
# Initialize the database schema
graph_search.initialize_schema()
# Build the graph in Neo4j
await graph_search.process_graph(query, similarity_threshold=0.8, relevance_threshold=0.8)
# Query the graph and generate a response
answer = graph_search.query_graph(query)
response = ""
async for chunk in reasoner.reason(query, answer):
response += chunk
print(response, end="", flush=True)
# Display the graph
graph_search.display_graph(query)
# Evaluate the response
evaluation = await evaluator.evaluate_response(query, response, [answer])
print(f"Faithfulness: {evaluation['faithfulness']}")
print(f"Answer Relevancy: {evaluation['answer relevancy']}")
print(f"Context Utilization: {evaluation['contextual recall']}")
# Shutdown the executor after all tasks are complete
await graph_search.close()
# Run the test function
asyncio.run(test_graph_search())