File size: 2,823 Bytes
1197f7d 669657d 1197f7d 669657d 1197f7d f0fdf9a 1197f7d 584d5bd 1197f7d 669657d 1197f7d 669657d 1197f7d 669657d 1197f7d 669657d 1197f7d 669657d 1197f7d 669657d 1197f7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import torch
from loguru import logger
from torch import Tensor
from torch.cuda.amp import GradScaler, autocast
from tqdm import tqdm
from yolo.config.config import Config, TrainConfig
from yolo.model.yolo import YOLO
from yolo.tools.model_helper import EMA, get_optimizer, get_scheduler
from yolo.utils.loss import get_loss_function
class Trainer:
def __init__(self, model: YOLO, cfg: Config, device):
train_cfg: TrainConfig = cfg.hyper.train
self.model = model.to(device)
self.device = device
self.optimizer = get_optimizer(model.parameters(), train_cfg.optimizer)
self.scheduler = get_scheduler(self.optimizer, train_cfg.scheduler)
self.loss_fn = get_loss_function(cfg)
if train_cfg.ema.get("enabled", False):
self.ema = EMA(model, decay=train_cfg.ema.decay)
else:
self.ema = None
self.scaler = GradScaler()
def train_one_batch(self, data: Tensor, targets: Tensor, progress: tqdm):
data, targets = data.to(self.device), targets.to(self.device)
self.optimizer.zero_grad()
with autocast():
outputs = self.model(data)
loss, loss_item = self.loss_fn(outputs, targets)
loss_iou, loss_dfl, loss_cls = loss_item
progress.set_description(f"Loss IoU: {loss_iou:.5f}, DFL: {loss_dfl:.5f}, CLS: {loss_cls:.5f}")
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
if self.ema:
self.ema.update()
return loss.item()
def train_one_epoch(self, dataloader):
self.model.train()
total_loss = 0
with tqdm(dataloader, desc="Training") as progress:
for data, targets in progress:
loss = self.train_one_batch(data, targets, progress)
total_loss += loss
if self.scheduler:
self.scheduler.step()
return total_loss / len(dataloader)
def save_checkpoint(self, epoch: int, filename="checkpoint.pt"):
checkpoint = {
"epoch": epoch,
"model_state_dict": self.model.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
}
if self.ema:
self.ema.apply_shadow()
checkpoint["model_state_dict_ema"] = self.model.state_dict()
self.ema.restore()
torch.save(checkpoint, filename)
def train(self, dataloader, num_epochs):
logger.info("start train")
for epoch in range(num_epochs):
epoch_loss = self.train_one_epoch(dataloader)
logger.info(f"Epoch {epoch+1}/{num_epochs}, Loss: {epoch_loss:.4f}")
if (epoch + 1) % 5 == 0:
self.save_checkpoint(epoch, f"checkpoint_epoch_{epoch+1}.pth")
|