File size: 5,902 Bytes
1fe2937
475302b
 
1197f7d
 
7d7e199
1fe2937
7d7e199
475302b
1197f7d
3e08dd8
1197f7d
475302b
3e08dd8
475302b
1197f7d
 
dcceddd
1197f7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcceddd
1197f7d
 
 
 
 
 
3e08dd8
 
 
 
 
 
 
 
 
 
1197f7d
 
 
dcceddd
1197f7d
 
 
 
 
3e08dd8
 
 
 
7f8ebc5
97e9dcb
3e08dd8
 
 
7d7e199
 
1fe2937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee7407
 
4056352
ecc08c8
 
 
 
3b31306
 
475302b
 
 
 
 
 
 
 
d5a73bd
 
475302b
 
21a413f
d5a73bd
 
 
475302b
 
d5a73bd
475302b
 
 
21a413f
475302b
 
 
 
 
21a413f
 
 
475302b
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
from pathlib import Path
from typing import List, Optional, Type, Union

import torch
import torch.distributed as dist
from loguru import logger
from omegaconf import ListConfig
from torch import Tensor
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR, SequentialLR, _LRScheduler

from yolo.config.config import IDX_TO_ID, NMSConfig, OptimizerConfig, SchedulerConfig
from yolo.model.yolo import YOLO
from yolo.utils.bounding_box_utils import bbox_nms, transform_bbox


class ExponentialMovingAverage:
    def __init__(self, model: torch.nn.Module, decay: float):
        self.model = model
        self.decay = decay
        self.shadow = {name: param.clone().detach() for name, param in model.named_parameters()}

    def update(self):
        """Update the shadow parameters using the current model parameters."""
        for name, param in self.model.named_parameters():
            assert name in self.shadow, "All model parameters should have a corresponding shadow parameter."
            new_average = (1.0 - self.decay) * param.data + self.decay * self.shadow[name]
            self.shadow[name] = new_average.clone()

    def apply_shadow(self):
        """Apply the shadow parameters to the model."""
        for name, param in self.model.named_parameters():
            param.data.copy_(self.shadow[name])

    def restore(self):
        """Restore the original parameters from the shadow."""
        for name, param in self.model.named_parameters():
            self.shadow[name].copy_(param.data)


def create_optimizer(model: YOLO, optim_cfg: OptimizerConfig) -> Optimizer:
    """Create an optimizer for the given model parameters based on the configuration.

    Returns:
        An instance of the optimizer configured according to the provided settings.
    """
    optimizer_class: Type[Optimizer] = getattr(torch.optim, optim_cfg.type)

    bias_params = [p for name, p in model.named_parameters() if "bias" in name]
    norm_params = [p for name, p in model.named_parameters() if "weight" in name and "bn" in name]
    conv_params = [p for name, p in model.named_parameters() if "weight" in name and "bn" not in name]

    model_parameters = [
        {"params": bias_params, "nestrov": True, "momentum": 0.937},
        {"params": conv_params, "weight_decay": 0.0},
        {"params": norm_params, "weight_decay": 1e-5},
    ]
    return optimizer_class(model_parameters, **optim_cfg.args)


def create_scheduler(optimizer: Optimizer, schedule_cfg: SchedulerConfig) -> _LRScheduler:
    """Create a learning rate scheduler for the given optimizer based on the configuration.

    Returns:
        An instance of the scheduler configured according to the provided settings.
    """
    scheduler_class: Type[_LRScheduler] = getattr(torch.optim.lr_scheduler, schedule_cfg.type)
    schedule = scheduler_class(optimizer, **schedule_cfg.args)
    if hasattr(schedule_cfg, "warmup"):
        wepoch = schedule_cfg.warmup.epochs
        lambda1 = lambda epoch: 0.1 + 0.9 * (epoch / wepoch) if epoch < wepoch else 1
        lambda2 = lambda epoch: 10 - 9 * (epoch / wepoch) if epoch < wepoch else 1
        warmup_schedule = LambdaLR(optimizer, lr_lambda=[lambda1, lambda2, lambda1])
        schedule = SequentialLR(optimizer, schedulers=[warmup_schedule, schedule], milestones=[2])
    return schedule


def initialize_distributed() -> None:
    rank = int(os.getenv("RANK", "0"))
    local_rank = int(os.getenv("LOCAL_RANK", "0"))
    world_size = int(os.getenv("WORLD_SIZE", "1"))

    torch.cuda.set_device(local_rank)
    dist.init_process_group(backend="nccl", rank=rank, world_size=world_size)
    logger.info(f"Initialized process group; rank: {rank}, size: {world_size}")
    return local_rank


def get_device(device_spec: Union[str, int, List[int]]) -> torch.device:
    ddp_flag = False
    if isinstance(device_spec, (list, ListConfig)):
        ddp_flag = True
        device_spec = initialize_distributed()
    if torch.cuda.is_available() and "cuda" in str(device_spec):
        return torch.device(device_spec), ddp_flag
    if not torch.cuda.is_available():
        if device_spec != "cpu":
            logger.warning(f"❎ Device spec: {device_spec} not support, Choosing CPU instead")
        return torch.device("cpu"), False

    device = torch.device(device_spec)
    return device, ddp_flag


class PostProccess:
    """
    TODO: function document
    scale back the prediction and do nms for pred_bbox
    """

    def __init__(self, converter, nms_cfg: NMSConfig) -> None:
        self.converter = converter
        self.nms = nms_cfg

    def __call__(self, predict, rev_tensor: Optional[Tensor] = None):
        prediction = self.converter(predict["Main"])
        pred_class, _, pred_bbox = prediction[:3]
        pred_conf = prediction[3] if len(prediction) == 4 else None
        if rev_tensor is not None:
            pred_bbox = (pred_bbox - rev_tensor[:, None, 1:]) / rev_tensor[:, 0:1, None]
        pred_bbox = bbox_nms(pred_class, pred_bbox, self.nms, pred_conf)
        return pred_bbox


def predicts_to_json(img_paths, predicts, rev_tensor):
    """
    TODO: function document
    turn a batch of imagepath and predicts(n x 6 for each image) to a List of diction(Detection output)
    """
    batch_json = []
    for img_path, bboxes, box_reverse in zip(img_paths, predicts, rev_tensor):
        scale, shift = box_reverse.split([1, 4])
        bboxes[:, 1:5] = (bboxes[:, 1:5] - shift[None]) / scale[None]
        bboxes[:, 1:5] = transform_bbox(bboxes[:, 1:5], "xyxy -> xywh")
        for cls, *pos, conf in bboxes:
            bbox = {
                "image_id": int(Path(img_path).stem),
                "category_id": IDX_TO_ID[int(cls)],
                "bbox": [float(p) for p in pos],
                "score": float(conf),
            }
            batch_json.append(bbox)
    return batch_json