File size: 7,183 Bytes
ecf6aba a0976c9 ecf6aba 1197f7d 669657d 6e46676 669657d 1197f7d 97e9dcb 9eb2d4e 97e9dcb 9eb2d4e d1477fc 2dd2ae5 d58a9b6 dcceddd 1197f7d dcceddd d58a9b6 b5fa3f1 9eb2d4e 2dd2ae5 1197f7d dcceddd d1477fc d58a9b6 9eb2d4e 1197f7d 86ef0ef d58a9b6 b2baf14 6e85a96 dcceddd 1197f7d 669657d 1197f7d f95a3d7 1197f7d 669657d f95a3d7 2dd2ae5 669657d b4bcccb 669657d f2370d7 1197f7d 6e46676 f95a3d7 6e46676 f2370d7 6e46676 1197f7d 669657d 1197f7d 9eb2d4e 6e46676 9eb2d4e 6e46676 f2370d7 6e46676 3e08dd8 c601a4c 3e08dd8 6e46676 86ef0ef 9eb2d4e d58a9b6 9eb2d4e 2dd2ae5 d58a9b6 9eb2d4e d58a9b6 635f41a 7692528 9eb2d4e 8ca39dc 9eb2d4e f95a3d7 9eb2d4e ecf6aba a0976c9 8ca39dc f95a3d7 635f41a f95a3d7 635f41a ecf6aba 635f41a a0976c9 635f41a ecf6aba 635f41a 78e3679 635f41a f3e770a 8ca39dc bbd2c43 f3e770a 8ca39dc b2baf14 f95a3d7 b2baf14 d58a9b6 b2baf14 f95a3d7 b2baf14 f95a3d7 b2baf14 86ef0ef b2baf14 86ef0ef b2baf14 86ef0ef f95a3d7 b2baf14 f95a3d7 b2baf14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import os
import time
import torch
from loguru import logger
from torch import Tensor
# TODO: We may can't use CUDA?
from torch.cuda.amp import GradScaler, autocast
from yolo.config.config import Config, TrainConfig, ValidationConfig
from yolo.model.yolo import YOLO
from yolo.tools.data_loader import StreamDataLoader, create_dataloader
from yolo.tools.drawer import draw_bboxes
from yolo.tools.loss_functions import create_loss_function
from yolo.utils.bounding_box_utils import Vec2Box, bbox_nms, calculate_map
from yolo.utils.logging_utils import ProgressLogger
from yolo.utils.model_utils import (
ExponentialMovingAverage,
create_optimizer,
create_scheduler,
)
class ModelTrainer:
def __init__(self, cfg: Config, model: YOLO, vec2box: Vec2Box, progress: ProgressLogger, device):
train_cfg: TrainConfig = cfg.task
self.model = model
self.vec2box = vec2box
self.device = device
self.optimizer = create_optimizer(model, train_cfg.optimizer)
self.scheduler = create_scheduler(self.optimizer, train_cfg.scheduler)
self.loss_fn = create_loss_function(cfg, vec2box)
self.progress = progress
self.num_epochs = cfg.task.epoch
self.validation_dataloader = create_dataloader(cfg.task.validation.data, cfg.dataset, cfg.task.validation.task)
self.validator = ModelValidator(cfg.task.validation, model, vec2box, progress, device, self.progress)
if getattr(train_cfg.ema, "enabled", False):
self.ema = ExponentialMovingAverage(model, decay=train_cfg.ema.decay)
else:
self.ema = None
self.scaler = GradScaler()
def train_one_batch(self, images: Tensor, targets: Tensor):
images, targets = images.to(self.device), targets.to(self.device)
self.optimizer.zero_grad()
with autocast():
predicts = self.model(images)
aux_predicts = self.vec2box(predicts["AUX"])
main_predicts = self.vec2box(predicts["Main"])
loss, loss_item = self.loss_fn(aux_predicts, main_predicts, targets)
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
return loss.item(), loss_item
def train_one_epoch(self, dataloader):
self.model.train()
total_loss = 0
for images, targets in dataloader:
loss, loss_each = self.train_one_batch(images, targets)
total_loss += loss
self.progress.one_batch(loss_each)
if self.scheduler:
self.scheduler.step()
return total_loss / len(dataloader)
def save_checkpoint(self, epoch: int, filename="checkpoint.pt"):
checkpoint = {
"epoch": epoch,
"model_state_dict": self.model.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
}
if self.ema:
self.ema.apply_shadow()
checkpoint["model_state_dict_ema"] = self.model.state_dict()
self.ema.restore()
torch.save(checkpoint, filename)
def solve(self, dataloader):
logger.info("π Start Training!")
num_epochs = self.num_epochs
with self.progress.progress:
self.progress.start_train(num_epochs)
for epoch in range(num_epochs):
self.progress.start_one_epoch(len(dataloader), self.optimizer, epoch)
epoch_loss = self.train_one_epoch(dataloader)
self.progress.finish_one_epoch()
self.validator.solve(self.validation_dataloader)
class ModelTester:
def __init__(self, cfg: Config, model: YOLO, vec2box: Vec2Box, progress: ProgressLogger, device):
self.model = model
self.device = device
self.vec2box = vec2box
self.progress = progress
self.nms = cfg.task.nms
self.save_path = os.path.join(progress.save_path, "images")
os.makedirs(self.save_path, exist_ok=True)
self.save_predict = getattr(cfg.task, "save_predict", None)
self.idx2label = cfg.class_list
def solve(self, dataloader: StreamDataLoader):
logger.info("π Start Inference!")
if isinstance(self.model, torch.nn.Module):
self.model.eval()
if dataloader.is_stream:
import cv2
import numpy as np
last_time = time.time()
try:
for idx, images in enumerate(dataloader):
images = images.to(self.device)
with torch.no_grad():
predicts = self.model(images)
predicts = self.vec2box(predicts["Main"])
nms_out = bbox_nms(predicts[0], predicts[2], self.nms)
img = draw_bboxes(images[0], nms_out[0], idx2label=self.idx2label)
if dataloader.is_stream:
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
fps = 1 / (time.time() - last_time)
cv2.putText(img, f"FPS: {fps:.2f}", (0, 15), 0, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
last_time = time.time()
cv2.imshow("Prediction", img)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
if not self.save_predict:
continue
if self.save_predict != False:
save_image_path = os.path.join(self.save_path, f"frame{idx:03d}.png")
img.save(save_image_path)
logger.info(f"πΎ Saved visualize image at {save_image_path}")
except (KeyboardInterrupt, Exception) as e:
dataloader.stop_event.set()
dataloader.stop()
if isinstance(e, KeyboardInterrupt):
logger.error("User Keyboard Interrupt")
else:
raise e
dataloader.stop()
class ModelValidator:
def __init__(
self,
validation_cfg: ValidationConfig,
model: YOLO,
vec2box: Vec2Box,
device,
progress: ProgressLogger,
):
self.model = model
self.vec2box = vec2box
self.device = device
self.progress = progress
self.nms = validation_cfg.nms
def solve(self, dataloader):
# logger.info("π§ͺ Start Validation!")
self.model.eval()
# TODO: choice mAP metrics?
iou_thresholds = torch.arange(0.5, 1.0, 0.05)
map_all = []
self.progress.start_one_epoch(len(dataloader))
for images, targets in dataloader:
images, targets = images.to(self.device), targets.to(self.device)
with torch.no_grad():
predicts = self.model(images)
predicts = self.vec2box(predicts["Main"])
nms_out = bbox_nms(predicts[0], predicts[2], self.nms)
for idx, predict in enumerate(nms_out):
map_value = calculate_map(predict, targets[idx], iou_thresholds)
map_all.append(map_value[0])
self.progress.one_batch(mapp=torch.Tensor(map_all).mean())
self.progress.finish_one_epoch()
|