File size: 10,086 Bytes
fa09d11
 
3441a79
ecf6aba
a0976c9
c3b133e
b038f54
73b88fc
ecf6aba
1197f7d
 
999037c
669657d
6e46676
 
669657d
1fe2937
 
1197f7d
b038f54
9eb2d4e
97e9dcb
afa32b4
d1477fc
21a413f
b038f54
afa32b4
dcceddd
 
3441a79
dcceddd
 
3441a79
dcceddd
999037c
1197f7d
 
dcceddd
afa32b4
b5fa3f1
1fe2937
 
2dd2ae5
1197f7d
dcceddd
 
d1477fc
d58a9b6
9eb2d4e
73b88fc
 
fa09d11
 
1197f7d
afa32b4
 
 
 
 
 
 
b038f54
b2baf14
6e85a96
dcceddd
1197f7d
 
669657d
1197f7d
f95a3d7
 
1197f7d
669657d
 
f95a3d7
 
 
2dd2ae5
669657d
 
 
 
 
c3b133e
669657d
f2370d7
1197f7d
c3b133e
 
5b9da41
c3b133e
5b9da41
c3b133e
6e46676
c3b133e
 
 
f2370d7
6e46676
c3b133e
 
 
6e46676
 
 
c3b133e
1197f7d
73b88fc
 
fa09d11
73b88fc
1197f7d
73b88fc
1197f7d
 
 
 
 
 
 
73b88fc
 
 
 
 
 
 
 
 
 
 
1197f7d
1fe2937
6e46676
9eb2d4e
6e46676
2275731
73b88fc
2275731
73b88fc
6e46676
73b88fc
2275731
73b88fc
6e46676
73b88fc
 
 
88e45b9
46c9d1c
9eb2d4e
 
 
d58a9b6
9eb2d4e
 
d58a9b6
9eb2d4e
329fd0a
fa09d11
d58a9b6
635f41a
7692528
9eb2d4e
8ca39dc
9eb2d4e
f95a3d7
 
9eb2d4e
ecf6aba
 
 
a0976c9
 
8ca39dc
8b1b21f
8ca39dc
8b1b21f
8ca39dc
f95a3d7
329fd0a
 
ecf6aba
 
635f41a
a0976c9
 
 
635f41a
ecf6aba
 
635f41a
 
78e3679
fa09d11
635f41a
 
 
f3e770a
8ca39dc
 
bbd2c43
 
 
f3e770a
8ca39dc
b2baf14
 
 
 
 
 
b038f54
b2baf14
f95a3d7
d58a9b6
3441a79
b2baf14
 
 
 
f95a3d7
3441a79
fa09d11
b2baf14
fa09d11
 
b038f54
 
 
999037c
 
b2baf14
 
73b88fc
c3b133e
 
8b1b21f
b2baf14
f95a3d7
21a413f
 
73b88fc
 
 
 
 
 
b2baf14
21a413f
73b88fc
 
3441a79
 
b038f54
 
 
 
73b88fc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import contextlib
import io
import json
import os
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, Optional

import torch
from loguru import logger
from pycocotools.coco import COCO
from torch import Tensor

# TODO: We may can't use CUDA?
from torch.cuda.amp import GradScaler, autocast
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader

from yolo.config.config import Config, DatasetConfig, TrainConfig, ValidationConfig
from yolo.model.yolo import YOLO
from yolo.tools.data_loader import StreamDataLoader, create_dataloader
from yolo.tools.drawer import draw_bboxes, draw_model
from yolo.tools.loss_functions import create_loss_function
from yolo.utils.bounding_box_utils import Vec2Box, calculate_map
from yolo.utils.dataset_utils import locate_label_paths
from yolo.utils.logging_utils import ProgressLogger, log_model_structure
from yolo.utils.model_utils import (
    ExponentialMovingAverage,
    PostProccess,
    create_optimizer,
    create_scheduler,
    predicts_to_json,
)
from yolo.utils.solver_utils import calculate_ap


class ModelTrainer:
    def __init__(self, cfg: Config, model: YOLO, vec2box: Vec2Box, progress: ProgressLogger, device, use_ddp: bool):
        train_cfg: TrainConfig = cfg.task
        self.model = model if not use_ddp else DDP(model, device_ids=[device])
        self.use_ddp = use_ddp
        self.vec2box = vec2box
        self.device = device
        self.optimizer = create_optimizer(model, train_cfg.optimizer)
        self.scheduler = create_scheduler(self.optimizer, train_cfg.scheduler)
        self.loss_fn = create_loss_function(cfg, vec2box)
        self.progress = progress
        self.num_epochs = cfg.task.epoch
        self.mAPs_dict = defaultdict(list)

        self.weights_dir = self.progress.save_path / "weights"
        self.weights_dir.mkdir(exist_ok=True)

        if not progress.quite_mode:
            log_model_structure(model.model)
            draw_model(model=model)

        self.validation_dataloader = create_dataloader(
            cfg.task.validation.data, cfg.dataset, cfg.task.validation.task, use_ddp
        )
        self.validator = ModelValidator(cfg.task.validation, cfg.dataset, model, vec2box, progress, device)

        if getattr(train_cfg.ema, "enabled", False):
            self.ema = ExponentialMovingAverage(model, decay=train_cfg.ema.decay)
        else:
            self.ema = None
        self.scaler = GradScaler()

    def train_one_batch(self, images: Tensor, targets: Tensor):
        images, targets = images.to(self.device), targets.to(self.device)
        self.optimizer.zero_grad()

        with autocast():
            predicts = self.model(images)
            aux_predicts = self.vec2box(predicts["AUX"])
            main_predicts = self.vec2box(predicts["Main"])
            loss, loss_item = self.loss_fn(aux_predicts, main_predicts, targets)

        self.scaler.scale(loss).backward()
        self.scaler.step(self.optimizer)
        self.scaler.update()

        return loss_item

    def train_one_epoch(self, dataloader):
        self.model.train()
        total_loss = defaultdict(lambda: torch.tensor(0.0, device=self.device))
        total_samples = 0
        self.optimizer.next_epoch(len(dataloader))
        for batch_size, images, targets, *_ in dataloader:
            self.optimizer.next_batch()
            loss_each = self.train_one_batch(images, targets)

            for loss_name, loss_val in loss_each.items():
                total_loss[loss_name] += loss_val * batch_size
            total_samples += batch_size
            self.progress.one_batch(loss_each)

        for loss_val in total_loss.values():
            loss_val /= total_samples

        if self.scheduler:
            self.scheduler.step()

        return total_loss

    def save_checkpoint(self, epoch_idx: int, file_name: Optional[str] = None):
        file_name = file_name or f"E{epoch_idx:03d}.pt"
        file_path = self.weights_dir / file_name

        checkpoint = {
            "epoch": epoch_idx,
            "model_state_dict": self.model.state_dict(),
            "optimizer_state_dict": self.optimizer.state_dict(),
        }
        if self.ema:
            self.ema.apply_shadow()
            checkpoint["model_state_dict_ema"] = self.model.state_dict()
            self.ema.restore()

        print(f"πŸ’Ύ success save at {file_path}")
        torch.save(checkpoint, file_path)

    def good_epoch(self, mAPs: Dict[str, Tensor]) -> bool:
        save_flag = True
        for mAP_key, mAP_val in mAPs.items():
            self.mAPs_dict[mAP_key].append(mAP_val)
            if mAP_val < max(self.mAPs_dict[mAP_key]):
                save_flag = False
        return save_flag

    def solve(self, dataloader: DataLoader):
        logger.info("πŸš„ Start Training!")
        num_epochs = self.num_epochs

        self.progress.start_train(num_epochs)
        for epoch_idx in range(num_epochs):
            if self.use_ddp:
                dataloader.sampler.set_epoch(epoch_idx)

            self.progress.start_one_epoch(len(dataloader), "Train", self.optimizer, epoch_idx)
            epoch_loss = self.train_one_epoch(dataloader)
            self.progress.finish_one_epoch(epoch_loss, epoch_idx=epoch_idx)

            mAPs = self.validator.solve(self.validation_dataloader, epoch_idx=epoch_idx)
            if self.good_epoch(mAPs):
                self.save_checkpoint(epoch_idx=epoch_idx)
            # TODO: save model if result are better than before
        self.progress.finish_train()


class ModelTester:
    def __init__(self, cfg: Config, model: YOLO, vec2box: Vec2Box, progress: ProgressLogger, device):
        self.model = model
        self.device = device
        self.progress = progress

        self.post_proccess = PostProccess(vec2box, cfg.task.nms)
        self.save_path = progress.save_path / "images"
        os.makedirs(self.save_path, exist_ok=True)
        self.save_predict = getattr(cfg.task, "save_predict", None)
        self.idx2label = cfg.class_list

    def solve(self, dataloader: StreamDataLoader):
        logger.info("πŸ‘€ Start Inference!")
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()

        if dataloader.is_stream:
            import cv2
            import numpy as np

            last_time = time.time()
        try:
            for idx, (images, rev_tensor, origin_frame) in enumerate(dataloader):
                images = images.to(self.device)
                rev_tensor = rev_tensor.to(self.device)
                with torch.no_grad():
                    predicts = self.model(images)
                    predicts = self.post_proccess(predicts, rev_tensor)
                img = draw_bboxes(origin_frame, predicts, idx2label=self.idx2label)

                if dataloader.is_stream:
                    img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
                    fps = 1 / (time.time() - last_time)
                    cv2.putText(img, f"FPS: {fps:.2f}", (0, 15), 0, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
                    last_time = time.time()
                    cv2.imshow("Prediction", img)
                    if cv2.waitKey(1) & 0xFF == ord("q"):
                        break
                    if not self.save_predict:
                        continue
                if self.save_predict != False:
                    save_image_path = self.save_path / f"frame{idx:03d}.png"
                    img.save(save_image_path)
                    logger.info(f"πŸ’Ύ Saved visualize image at {save_image_path}")

        except (KeyboardInterrupt, Exception) as e:
            dataloader.stop_event.set()
            dataloader.stop()
            if isinstance(e, KeyboardInterrupt):
                logger.error("User Keyboard Interrupt")
            else:
                raise e
        dataloader.stop()


class ModelValidator:
    def __init__(
        self,
        validation_cfg: ValidationConfig,
        dataset_cfg: DatasetConfig,
        model: YOLO,
        vec2box: Vec2Box,
        progress: ProgressLogger,
        device,
    ):
        self.model = model
        self.device = device
        self.progress = progress

        self.post_proccess = PostProccess(vec2box, validation_cfg.nms)
        self.json_path = self.progress.save_path / "predict.json"

        with contextlib.redirect_stdout(io.StringIO()):
            # TODO: load with config file
            json_path, _ = locate_label_paths(Path(dataset_cfg.path), dataset_cfg.get("val", "val"))
            if json_path:
                self.coco_gt = COCO(json_path)

    def solve(self, dataloader, epoch_idx=-1):
        # logger.info("πŸ§ͺ Start Validation!")
        self.model.eval()
        predict_json, mAPs = [], defaultdict(list)
        self.progress.start_one_epoch(len(dataloader), task="Validate")
        for batch_size, images, targets, rev_tensor, img_paths in dataloader:
            images, targets, rev_tensor = images.to(self.device), targets.to(self.device), rev_tensor.to(self.device)
            with torch.no_grad():
                predicts = self.model(images)
                predicts = self.post_proccess(predicts)
                for idx, predict in enumerate(predicts):
                    mAP = calculate_map(predict, targets[idx])
                    for mAP_key, mAP_val in mAP.items():
                        mAPs[mAP_key].append(mAP_val)

            avg_mAPs = {key: torch.mean(torch.stack(val)) for key, val in mAPs.items()}
            self.progress.one_batch(avg_mAPs)

            predict_json.extend(predicts_to_json(img_paths, predicts, rev_tensor))
        self.progress.finish_one_epoch(avg_mAPs, epoch_idx=epoch_idx)

        with open(self.json_path, "w") as f:
            json.dump(predict_json, f)
        if hasattr(self, "coco_gt"):
            self.progress.start_pycocotools()
            result = calculate_ap(self.coco_gt, predict_json)
            self.progress.finish_pycocotools(result, epoch_idx)

        return avg_mAPs