File size: 10,086 Bytes
fa09d11 3441a79 ecf6aba a0976c9 c3b133e b038f54 73b88fc ecf6aba 1197f7d 999037c 669657d 6e46676 669657d 1fe2937 1197f7d b038f54 9eb2d4e 97e9dcb afa32b4 d1477fc 21a413f b038f54 afa32b4 dcceddd 3441a79 dcceddd 3441a79 dcceddd 999037c 1197f7d dcceddd afa32b4 b5fa3f1 1fe2937 2dd2ae5 1197f7d dcceddd d1477fc d58a9b6 9eb2d4e 73b88fc fa09d11 1197f7d afa32b4 b038f54 b2baf14 6e85a96 dcceddd 1197f7d 669657d 1197f7d f95a3d7 1197f7d 669657d f95a3d7 2dd2ae5 669657d c3b133e 669657d f2370d7 1197f7d c3b133e 5b9da41 c3b133e 5b9da41 c3b133e 6e46676 c3b133e f2370d7 6e46676 c3b133e 6e46676 c3b133e 1197f7d 73b88fc fa09d11 73b88fc 1197f7d 73b88fc 1197f7d 73b88fc 1197f7d 1fe2937 6e46676 9eb2d4e 6e46676 2275731 73b88fc 2275731 73b88fc 6e46676 73b88fc 2275731 73b88fc 6e46676 73b88fc 88e45b9 46c9d1c 9eb2d4e d58a9b6 9eb2d4e d58a9b6 9eb2d4e 329fd0a fa09d11 d58a9b6 635f41a 7692528 9eb2d4e 8ca39dc 9eb2d4e f95a3d7 9eb2d4e ecf6aba a0976c9 8ca39dc 8b1b21f 8ca39dc 8b1b21f 8ca39dc f95a3d7 329fd0a ecf6aba 635f41a a0976c9 635f41a ecf6aba 635f41a 78e3679 fa09d11 635f41a f3e770a 8ca39dc bbd2c43 f3e770a 8ca39dc b2baf14 b038f54 b2baf14 f95a3d7 d58a9b6 3441a79 b2baf14 f95a3d7 3441a79 fa09d11 b2baf14 fa09d11 b038f54 999037c b2baf14 73b88fc c3b133e 8b1b21f b2baf14 f95a3d7 21a413f 73b88fc b2baf14 21a413f 73b88fc 3441a79 b038f54 73b88fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import contextlib
import io
import json
import os
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, Optional
import torch
from loguru import logger
from pycocotools.coco import COCO
from torch import Tensor
# TODO: We may can't use CUDA?
from torch.cuda.amp import GradScaler, autocast
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from yolo.config.config import Config, DatasetConfig, TrainConfig, ValidationConfig
from yolo.model.yolo import YOLO
from yolo.tools.data_loader import StreamDataLoader, create_dataloader
from yolo.tools.drawer import draw_bboxes, draw_model
from yolo.tools.loss_functions import create_loss_function
from yolo.utils.bounding_box_utils import Vec2Box, calculate_map
from yolo.utils.dataset_utils import locate_label_paths
from yolo.utils.logging_utils import ProgressLogger, log_model_structure
from yolo.utils.model_utils import (
ExponentialMovingAverage,
PostProccess,
create_optimizer,
create_scheduler,
predicts_to_json,
)
from yolo.utils.solver_utils import calculate_ap
class ModelTrainer:
def __init__(self, cfg: Config, model: YOLO, vec2box: Vec2Box, progress: ProgressLogger, device, use_ddp: bool):
train_cfg: TrainConfig = cfg.task
self.model = model if not use_ddp else DDP(model, device_ids=[device])
self.use_ddp = use_ddp
self.vec2box = vec2box
self.device = device
self.optimizer = create_optimizer(model, train_cfg.optimizer)
self.scheduler = create_scheduler(self.optimizer, train_cfg.scheduler)
self.loss_fn = create_loss_function(cfg, vec2box)
self.progress = progress
self.num_epochs = cfg.task.epoch
self.mAPs_dict = defaultdict(list)
self.weights_dir = self.progress.save_path / "weights"
self.weights_dir.mkdir(exist_ok=True)
if not progress.quite_mode:
log_model_structure(model.model)
draw_model(model=model)
self.validation_dataloader = create_dataloader(
cfg.task.validation.data, cfg.dataset, cfg.task.validation.task, use_ddp
)
self.validator = ModelValidator(cfg.task.validation, cfg.dataset, model, vec2box, progress, device)
if getattr(train_cfg.ema, "enabled", False):
self.ema = ExponentialMovingAverage(model, decay=train_cfg.ema.decay)
else:
self.ema = None
self.scaler = GradScaler()
def train_one_batch(self, images: Tensor, targets: Tensor):
images, targets = images.to(self.device), targets.to(self.device)
self.optimizer.zero_grad()
with autocast():
predicts = self.model(images)
aux_predicts = self.vec2box(predicts["AUX"])
main_predicts = self.vec2box(predicts["Main"])
loss, loss_item = self.loss_fn(aux_predicts, main_predicts, targets)
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
return loss_item
def train_one_epoch(self, dataloader):
self.model.train()
total_loss = defaultdict(lambda: torch.tensor(0.0, device=self.device))
total_samples = 0
self.optimizer.next_epoch(len(dataloader))
for batch_size, images, targets, *_ in dataloader:
self.optimizer.next_batch()
loss_each = self.train_one_batch(images, targets)
for loss_name, loss_val in loss_each.items():
total_loss[loss_name] += loss_val * batch_size
total_samples += batch_size
self.progress.one_batch(loss_each)
for loss_val in total_loss.values():
loss_val /= total_samples
if self.scheduler:
self.scheduler.step()
return total_loss
def save_checkpoint(self, epoch_idx: int, file_name: Optional[str] = None):
file_name = file_name or f"E{epoch_idx:03d}.pt"
file_path = self.weights_dir / file_name
checkpoint = {
"epoch": epoch_idx,
"model_state_dict": self.model.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
}
if self.ema:
self.ema.apply_shadow()
checkpoint["model_state_dict_ema"] = self.model.state_dict()
self.ema.restore()
print(f"πΎ success save at {file_path}")
torch.save(checkpoint, file_path)
def good_epoch(self, mAPs: Dict[str, Tensor]) -> bool:
save_flag = True
for mAP_key, mAP_val in mAPs.items():
self.mAPs_dict[mAP_key].append(mAP_val)
if mAP_val < max(self.mAPs_dict[mAP_key]):
save_flag = False
return save_flag
def solve(self, dataloader: DataLoader):
logger.info("π Start Training!")
num_epochs = self.num_epochs
self.progress.start_train(num_epochs)
for epoch_idx in range(num_epochs):
if self.use_ddp:
dataloader.sampler.set_epoch(epoch_idx)
self.progress.start_one_epoch(len(dataloader), "Train", self.optimizer, epoch_idx)
epoch_loss = self.train_one_epoch(dataloader)
self.progress.finish_one_epoch(epoch_loss, epoch_idx=epoch_idx)
mAPs = self.validator.solve(self.validation_dataloader, epoch_idx=epoch_idx)
if self.good_epoch(mAPs):
self.save_checkpoint(epoch_idx=epoch_idx)
# TODO: save model if result are better than before
self.progress.finish_train()
class ModelTester:
def __init__(self, cfg: Config, model: YOLO, vec2box: Vec2Box, progress: ProgressLogger, device):
self.model = model
self.device = device
self.progress = progress
self.post_proccess = PostProccess(vec2box, cfg.task.nms)
self.save_path = progress.save_path / "images"
os.makedirs(self.save_path, exist_ok=True)
self.save_predict = getattr(cfg.task, "save_predict", None)
self.idx2label = cfg.class_list
def solve(self, dataloader: StreamDataLoader):
logger.info("π Start Inference!")
if isinstance(self.model, torch.nn.Module):
self.model.eval()
if dataloader.is_stream:
import cv2
import numpy as np
last_time = time.time()
try:
for idx, (images, rev_tensor, origin_frame) in enumerate(dataloader):
images = images.to(self.device)
rev_tensor = rev_tensor.to(self.device)
with torch.no_grad():
predicts = self.model(images)
predicts = self.post_proccess(predicts, rev_tensor)
img = draw_bboxes(origin_frame, predicts, idx2label=self.idx2label)
if dataloader.is_stream:
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
fps = 1 / (time.time() - last_time)
cv2.putText(img, f"FPS: {fps:.2f}", (0, 15), 0, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
last_time = time.time()
cv2.imshow("Prediction", img)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
if not self.save_predict:
continue
if self.save_predict != False:
save_image_path = self.save_path / f"frame{idx:03d}.png"
img.save(save_image_path)
logger.info(f"πΎ Saved visualize image at {save_image_path}")
except (KeyboardInterrupt, Exception) as e:
dataloader.stop_event.set()
dataloader.stop()
if isinstance(e, KeyboardInterrupt):
logger.error("User Keyboard Interrupt")
else:
raise e
dataloader.stop()
class ModelValidator:
def __init__(
self,
validation_cfg: ValidationConfig,
dataset_cfg: DatasetConfig,
model: YOLO,
vec2box: Vec2Box,
progress: ProgressLogger,
device,
):
self.model = model
self.device = device
self.progress = progress
self.post_proccess = PostProccess(vec2box, validation_cfg.nms)
self.json_path = self.progress.save_path / "predict.json"
with contextlib.redirect_stdout(io.StringIO()):
# TODO: load with config file
json_path, _ = locate_label_paths(Path(dataset_cfg.path), dataset_cfg.get("val", "val"))
if json_path:
self.coco_gt = COCO(json_path)
def solve(self, dataloader, epoch_idx=-1):
# logger.info("π§ͺ Start Validation!")
self.model.eval()
predict_json, mAPs = [], defaultdict(list)
self.progress.start_one_epoch(len(dataloader), task="Validate")
for batch_size, images, targets, rev_tensor, img_paths in dataloader:
images, targets, rev_tensor = images.to(self.device), targets.to(self.device), rev_tensor.to(self.device)
with torch.no_grad():
predicts = self.model(images)
predicts = self.post_proccess(predicts)
for idx, predict in enumerate(predicts):
mAP = calculate_map(predict, targets[idx])
for mAP_key, mAP_val in mAP.items():
mAPs[mAP_key].append(mAP_val)
avg_mAPs = {key: torch.mean(torch.stack(val)) for key, val in mAPs.items()}
self.progress.one_batch(avg_mAPs)
predict_json.extend(predicts_to_json(img_paths, predicts, rev_tensor))
self.progress.finish_one_epoch(avg_mAPs, epoch_idx=epoch_idx)
with open(self.json_path, "w") as f:
json.dump(predict_json, f)
if hasattr(self, "coco_gt"):
self.progress.start_pycocotools()
result = calculate_ap(self.coco_gt, predict_json)
self.progress.finish_pycocotools(result, epoch_idx)
return avg_mAPs
|