File size: 2,947 Bytes
a33e03b
 
 
 
 
 
 
360a2c0
862884c
 
 
360a2c0
 
 
 
862884c
 
 
0d49177
 
 
 
 
 
 
 
 
360a2c0
 
 
 
 
 
 
 
 
 
862884c
360a2c0
 
819890a
360a2c0
 
 
b6b57c7
360a2c0
 
 
 
 
 
 
 
 
b6b57c7
 
819890a
0d49177
862884c
360a2c0
 
 
 
 
 
 
 
b6b57c7
 
 
862884c
360a2c0
 
 
 
 
 
 
 
 
 
862884c
819890a
b6b57c7
360a2c0
 
 
 
 
 
 
 
 
 
a33e03b
 
 
360a2c0
 
 
 
 
a33e03b
360a2c0
 
 
 
 
 
 
 
 
 
a33e03b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "from pathlib import Path\n",
    "\n",
    "import torch\n",
    "from hydra import compose, initialize\n",
    "from PIL import Image \n",
    "\n",
    "project_root = Path().resolve().parent\n",
    "sys.path.append(str(project_root))\n",
    "\n",
    "from yolo import (\n",
    "    AugmentationComposer,\n",
    "    Config,\n",
    "    PostProccess,\n",
    "    create_converter,\n",
    "    create_model,\n",
    "    custom_logger,\n",
    "    draw_bboxes,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "CONFIG_PATH = \"../yolo/config\"\n",
    "CONFIG_NAME = \"config\"\n",
    "MODEL = \"v7-base\"\n",
    "\n",
    "DEVICE = 'cuda:0'\n",
    "CLASS_NUM = 80\n",
    "IMAGE_PATH = '../demo/images/inference/image.png'\n",
    "\n",
    "custom_logger()\n",
    "device = torch.device(DEVICE)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "with initialize(config_path=CONFIG_PATH, version_base=None, job_name=\"notebook_job\"):\n",
    "    cfg: Config = compose(config_name=CONFIG_NAME, overrides=[\"task=inference\", f\"task.data.source={IMAGE_PATH}\", f\"model={MODEL}\"])\n",
    "    model = create_model(cfg.model, class_num=CLASS_NUM).to(device)\n",
    "    transform = AugmentationComposer([], cfg.image_size)\n",
    "    converter = create_converter(cfg.model.name, model, cfg.model.anchor, cfg.image_size, device)\n",
    "    post_proccess = PostProccess(converter, cfg.task.nms)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pil_image = Image.open(IMAGE_PATH)\n",
    "image, bbox, rev_tensor = transform(pil_image)\n",
    "image = image.to(device)[None]\n",
    "rev_tensor = rev_tensor.to(device)[None]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "with torch.no_grad():\n",
    "    predict = model(image)\n",
    "    pred_bbox = post_proccess(predict, rev_tensor)\n",
    "\n",
    "draw_bboxes(pil_image, pred_bbox, idx2label=cfg.class_list)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Sample Output:\n",
    "\n",
    "![image](../demo/images/output/visualize.png)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "yolomit",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}