File size: 4,556 Bytes
1197f7d 669657d 6e46676 669657d 1197f7d 669657d 9eb2d4e 8ca39dc 9eb2d4e dcceddd 9eb2d4e dcceddd 1197f7d dcceddd 9eb2d4e b5fa3f1 9eb2d4e 1197f7d dcceddd 584d5bd 9eb2d4e 1197f7d 6e85a96 dcceddd 1197f7d 669657d 1197f7d 6e46676 1197f7d 669657d b4bcccb 669657d f2370d7 1197f7d 6e46676 f2370d7 6e46676 1197f7d 669657d 1197f7d 9eb2d4e 6e46676 9eb2d4e 6e46676 f2370d7 6e46676 3e08dd8 c601a4c 3e08dd8 6e46676 9eb2d4e 8ca39dc 9eb2d4e 8ca39dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import torch
from loguru import logger
from torch import Tensor
# TODO: We may can't use CUDA?
from torch.cuda.amp import GradScaler, autocast
from yolo.config.config import Config, TrainConfig
from yolo.model.yolo import YOLO
from yolo.tools.data_loader import StreamDataLoader
from yolo.tools.drawer import draw_bboxes
from yolo.tools.loss_functions import get_loss_function
from yolo.utils.bounding_box_utils import AnchorBoxConverter, bbox_nms
from yolo.utils.logging_utils import ProgressTracker
from yolo.utils.model_utils import (
ExponentialMovingAverage,
create_optimizer,
create_scheduler,
)
class ModelTrainer:
def __init__(self, cfg: Config, model: YOLO, save_path: str, device):
train_cfg: TrainConfig = cfg.task
self.model = model
self.device = device
self.optimizer = create_optimizer(model, train_cfg.optimizer)
self.scheduler = create_scheduler(self.optimizer, train_cfg.scheduler)
self.loss_fn = get_loss_function(cfg)
self.progress = ProgressTracker(cfg, save_path, cfg.use_wandb)
self.num_epochs = cfg.task.epoch
if getattr(train_cfg.ema, "enabled", False):
self.ema = ExponentialMovingAverage(model, decay=train_cfg.ema.decay)
else:
self.ema = None
self.scaler = GradScaler()
def train_one_batch(self, data: Tensor, targets: Tensor):
data, targets = data.to(self.device), targets.to(self.device)
self.optimizer.zero_grad()
with autocast():
outputs = self.model(data)
loss, loss_item = self.loss_fn(outputs, targets)
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
return loss.item(), loss_item
def train_one_epoch(self, dataloader):
self.model.train()
total_loss = 0
for data, targets in dataloader:
loss, loss_each = self.train_one_batch(data, targets)
total_loss += loss
self.progress.one_batch(loss_each)
if self.scheduler:
self.scheduler.step()
return total_loss / len(dataloader)
def save_checkpoint(self, epoch: int, filename="checkpoint.pt"):
checkpoint = {
"epoch": epoch,
"model_state_dict": self.model.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
}
if self.ema:
self.ema.apply_shadow()
checkpoint["model_state_dict_ema"] = self.model.state_dict()
self.ema.restore()
torch.save(checkpoint, filename)
def solve(self, dataloader):
logger.info("π Start Training!")
num_epochs = self.num_epochs
with self.progress.progress:
self.progress.start_train(num_epochs)
for epoch in range(num_epochs):
self.progress.start_one_epoch(len(dataloader), self.optimizer, epoch)
epoch_loss = self.train_one_epoch(dataloader)
self.progress.finish_one_epoch()
logger.info(f"Epoch {epoch+1}/{num_epochs}, Loss: {epoch_loss:.4f}")
if (epoch + 1) % 5 == 0:
self.save_checkpoint(epoch, f"checkpoint_epoch_{epoch+1}.pth")
class ModelTester:
def __init__(self, cfg: Config, model: YOLO, save_path: str, device):
self.model = model
self.device = device
self.progress = ProgressTracker(cfg, save_path, cfg.use_wandb)
self.anchor2box = AnchorBoxConverter(cfg, device)
self.nms = cfg.task.nms
self.save_path = save_path
def solve(self, dataloader: StreamDataLoader):
logger.info("π Start Inference!")
try:
for idx, images in enumerate(dataloader):
images = images.to(self.device)
with torch.no_grad():
raw_output = self.model(images)
predict, _ = self.anchor2box(raw_output[0][3:], with_logits=True)
nms_out = bbox_nms(predict, self.nms)
draw_bboxes(
images[0], nms_out[0], scaled_bbox=False, save_path=self.save_path, save_name=f"frame{idx:03d}.png"
)
except KeyboardInterrupt:
logger.error("Interrupted by user")
dataloader.stop_event.set()
dataloader.stop()
except Exception as e:
logger.error(e)
dataloader.stop_event.set()
dataloader.stop()
raise e
dataloader.stop()
|