File size: 2,891 Bytes
a33e03b 360a2c0 819890a 360a2c0 b6b57c7 360a2c0 819890a 360a2c0 b6b57c7 360a2c0 b6b57c7 819890a 360a2c0 b6b57c7 360a2c0 b6b57c7 819890a b6b57c7 360a2c0 a33e03b 360a2c0 a33e03b 360a2c0 a33e03b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from hydra import compose, initialize\n",
"from PIL import Image \n",
"\n",
"# Ensure that the necessary repository is cloned and installed. You may need to run: \n",
"# git clone [email protected]:WongKinYiu/YOLO.git\n",
"# cd YOLO \n",
"# pip install .\n",
"from yolo import AugmentationComposer, bbox_nms, Config, create_model, custom_logger, draw_bboxes, Vec2Box"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"CONFIG_PATH = \"../yolo/config\"\n",
"CONFIG_NAME = \"config\"\n",
"MODEL = \"v9-c\"\n",
"\n",
"DEVICE = 'cuda:0'\n",
"CLASS_NUM = 80\n",
"IMAGE_PATH = '../demo/images/inference/image.png'\n",
"\n",
"custom_logger()\n",
"device = torch.device(DEVICE)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with initialize(config_path=CONFIG_PATH, version_base=None, job_name=\"notebook_job\"):\n",
" cfg: Config = compose(config_name=CONFIG_NAME, overrides=[\"task=inference\", f\"task.data.source={IMAGE_PATH}\", f\"model={MODEL}\"])\n",
" model = create_model(cfg.model, class_num=CLASS_NUM).to(device)\n",
" transform = AugmentationComposer([], cfg.image_size)\n",
" vec2box = Vec2Box(model, cfg.image_size, device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pil_image = Image.open(IMAGE_PATH)\n",
"image, bbox, rev_tensor = transform(pil_image)\n",
"image = image.to(device)[None]\n",
"rev_tensor = rev_tensor.to(device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with torch.no_grad():\n",
" predict = model(image)\n",
" pred_class, _, pred_bbox = vec2box(predict[\"Main\"])\n",
"\n",
"pred_bbox = (pred_bbox / rev_tensor[0] - rev_tensor[None, None, 1:]) \n",
"pred_bbox = bbox_nms(pred_class, pred_bbox, cfg.task.nms)\n",
"draw_bboxes(pil_image, pred_bbox, idx2label=cfg.class_list)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sample Output:\n",
"\n",
""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "yolomit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|