File size: 7,630 Bytes
3441a79 ecf6aba a0976c9 ecf6aba 1197f7d 669657d 6e46676 669657d 1fe2937 1197f7d 97e9dcb 9eb2d4e 97e9dcb afa32b4 d1477fc 3441a79 afa32b4 dcceddd 3441a79 dcceddd 3441a79 dcceddd 1197f7d dcceddd afa32b4 b5fa3f1 1fe2937 2dd2ae5 1197f7d dcceddd d1477fc d58a9b6 9eb2d4e 1197f7d afa32b4 41f1f41 b2baf14 6e85a96 dcceddd 1197f7d 669657d 1197f7d f95a3d7 1197f7d 669657d f95a3d7 2dd2ae5 669657d b4bcccb 669657d f2370d7 1197f7d 6e46676 8b1b21f f95a3d7 6e46676 f2370d7 6e46676 1197f7d 669657d 1197f7d 1fe2937 6e46676 9eb2d4e 6e46676 2275731 6e46676 2275731 6e46676 2275731 9eb2d4e d58a9b6 9eb2d4e d58a9b6 9eb2d4e 329fd0a d58a9b6 635f41a 7692528 9eb2d4e 8ca39dc 9eb2d4e f95a3d7 9eb2d4e ecf6aba a0976c9 8ca39dc 8b1b21f 8ca39dc 8b1b21f 8ca39dc f95a3d7 329fd0a ecf6aba 635f41a a0976c9 635f41a ecf6aba 635f41a 78e3679 635f41a f3e770a 8ca39dc bbd2c43 f3e770a 8ca39dc b2baf14 f95a3d7 d58a9b6 3441a79 b2baf14 f95a3d7 3441a79 b2baf14 86ef0ef b2baf14 3441a79 86ef0ef 8b1b21f b2baf14 f95a3d7 3441a79 b2baf14 3441a79 b2baf14 3441a79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import json
import os
import time
import torch
from loguru import logger
from torch import Tensor
# TODO: We may can't use CUDA?
from torch.cuda.amp import GradScaler, autocast
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from yolo.config.config import Config, TrainConfig, ValidationConfig
from yolo.model.yolo import YOLO
from yolo.tools.data_loader import StreamDataLoader, create_dataloader
from yolo.tools.drawer import draw_bboxes, draw_model
from yolo.tools.loss_functions import create_loss_function
from yolo.utils.bounding_box_utils import Vec2Box
from yolo.utils.logging_utils import ProgressLogger, log_model_structure
from yolo.utils.model_utils import (
ExponentialMovingAverage,
PostProccess,
create_optimizer,
create_scheduler,
predicts_to_json,
)
class ModelTrainer:
def __init__(self, cfg: Config, model: YOLO, vec2box: Vec2Box, progress: ProgressLogger, device, use_ddp: bool):
train_cfg: TrainConfig = cfg.task
self.model = model if not use_ddp else DDP(model, device_ids=[device])
self.use_ddp = use_ddp
self.vec2box = vec2box
self.device = device
self.optimizer = create_optimizer(model, train_cfg.optimizer)
self.scheduler = create_scheduler(self.optimizer, train_cfg.scheduler)
self.loss_fn = create_loss_function(cfg, vec2box)
self.progress = progress
self.num_epochs = cfg.task.epoch
if not progress.quite_mode:
log_model_structure(model.model)
draw_model(model=model)
self.validation_dataloader = create_dataloader(
cfg.task.validation.data, cfg.dataset, cfg.task.validation.task, use_ddp
)
self.validator = ModelValidator(cfg.task.validation, model, vec2box, progress, device)
if getattr(train_cfg.ema, "enabled", False):
self.ema = ExponentialMovingAverage(model, decay=train_cfg.ema.decay)
else:
self.ema = None
self.scaler = GradScaler()
def train_one_batch(self, images: Tensor, targets: Tensor):
images, targets = images.to(self.device), targets.to(self.device)
self.optimizer.zero_grad()
with autocast():
predicts = self.model(images)
aux_predicts = self.vec2box(predicts["AUX"])
main_predicts = self.vec2box(predicts["Main"])
loss, loss_item = self.loss_fn(aux_predicts, main_predicts, targets)
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
return loss.item(), loss_item
def train_one_epoch(self, dataloader):
self.model.train()
total_loss = 0
for images, targets, *_ in dataloader:
loss, loss_each = self.train_one_batch(images, targets)
total_loss += loss
self.progress.one_batch(loss_each)
if self.scheduler:
self.scheduler.step()
return total_loss / len(dataloader)
def save_checkpoint(self, epoch: int, filename="checkpoint.pt"):
checkpoint = {
"epoch": epoch,
"model_state_dict": self.model.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
}
if self.ema:
self.ema.apply_shadow()
checkpoint["model_state_dict_ema"] = self.model.state_dict()
self.ema.restore()
torch.save(checkpoint, filename)
def solve(self, dataloader: DataLoader):
logger.info("π Start Training!")
num_epochs = self.num_epochs
self.progress.start_train(num_epochs)
for epoch in range(num_epochs):
if self.use_ddp:
dataloader.sampler.set_epoch(epoch)
self.progress.start_one_epoch(len(dataloader), self.optimizer, epoch)
# TODO: calculate epoch loss
epoch_loss = self.train_one_epoch(dataloader)
self.progress.finish_one_epoch()
self.validator.solve(self.validation_dataloader)
class ModelTester:
def __init__(self, cfg: Config, model: YOLO, vec2box: Vec2Box, progress: ProgressLogger, device):
self.model = model
self.device = device
self.progress = progress
self.post_proccess = PostProccess(vec2box, cfg.task.nms)
self.save_path = os.path.join(progress.save_path, "images")
os.makedirs(self.save_path, exist_ok=True)
self.save_predict = getattr(cfg.task, "save_predict", None)
self.idx2label = cfg.class_list
def solve(self, dataloader: StreamDataLoader):
logger.info("π Start Inference!")
if isinstance(self.model, torch.nn.Module):
self.model.eval()
if dataloader.is_stream:
import cv2
import numpy as np
last_time = time.time()
try:
for idx, (images, rev_tensor, origin_frame) in enumerate(dataloader):
images = images.to(self.device)
rev_tensor = rev_tensor.to(self.device)
with torch.no_grad():
predicts = self.model(images)
predicts = self.post_proccess(predicts, rev_tensor)
img = draw_bboxes(origin_frame, predicts, idx2label=self.idx2label)
if dataloader.is_stream:
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
fps = 1 / (time.time() - last_time)
cv2.putText(img, f"FPS: {fps:.2f}", (0, 15), 0, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
last_time = time.time()
cv2.imshow("Prediction", img)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
if not self.save_predict:
continue
if self.save_predict != False:
save_image_path = os.path.join(self.save_path, f"frame{idx:03d}.png")
img.save(save_image_path)
logger.info(f"πΎ Saved visualize image at {save_image_path}")
except (KeyboardInterrupt, Exception) as e:
dataloader.stop_event.set()
dataloader.stop()
if isinstance(e, KeyboardInterrupt):
logger.error("User Keyboard Interrupt")
else:
raise e
dataloader.stop()
class ModelValidator:
def __init__(
self,
validation_cfg: ValidationConfig,
model: YOLO,
vec2box: Vec2Box,
progress: ProgressLogger,
device,
):
self.model = model
self.device = device
self.progress = progress
self.post_proccess = PostProccess(vec2box, validation_cfg.nms)
self.json_path = os.path.join(self.progress.save_path, f"predict.json")
def solve(self, dataloader):
# logger.info("π§ͺ Start Validation!")
self.model.eval()
predict_json = []
self.progress.start_one_epoch(len(dataloader))
for images, targets, rev_tensor, img_paths in dataloader:
images, targets, rev_tensor = images.to(self.device), targets.to(self.device), rev_tensor.to(self.device)
with torch.no_grad():
predicts = self.model(images)
predicts = self.post_proccess(predicts, rev_tensor)
self.progress.one_batch()
predict_json.extend(predicts_to_json(img_paths, predicts))
self.progress.finish_one_epoch()
with open(self.json_path, "w") as f:
json.dump(predict_json, f)
|