File size: 5,348 Bytes
1197f7d
 
 
fa09d11
1197f7d
 
 
ed7ee89
1197f7d
dcceddd
0174b5b
b9a9275
1197f7d
fa09d11
1197f7d
 
 
 
fa09d11
 
1197f7d
 
fa09d11
1197f7d
fa09d11
1197f7d
fa09d11
1197f7d
fa09d11
1197f7d
 
fa09d11
1197f7d
 
 
 
1ff7fa6
 
1197f7d
 
dcceddd
1197f7d
 
 
 
 
 
 
 
 
 
 
 
b9a9275
dcceddd
fa09d11
1197f7d
 
 
dcceddd
1197f7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9a9275
 
1197f7d
 
 
 
 
 
dcceddd
1197f7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2d621f
 
 
fa548df
 
8e564ea
1197f7d
 
 
 
 
 
 
ed7ee89
 
 
1690354
 
 
 
 
 
 
 
ed7ee89
 
 
 
 
 
 
 
aba5422
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import json
import os
from itertools import chain
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple

import numpy as np
import torch

from yolo.tools.data_conversion import discretize_categories
from yolo.utils.logger import logger


def locate_label_paths(dataset_path: Path, phase_name: Path) -> Tuple[Path, Path]:
    """
    Find the path to label files for a specified dataset and phase(e.g. training).

    Args:
        dataset_path (Path): The path to the root directory of the dataset.
        phase_name (Path): The name of the phase for which labels are being searched (e.g., "train", "val", "test").

    Returns:
        Tuple[Path, Path]: A tuple containing the path to the labels file and the file format ("json" or "txt").
    """
    json_labels_path = dataset_path / "annotations" / f"instances_{phase_name}.json"

    txt_labels_path = dataset_path / "labels" / phase_name

    if json_labels_path.is_file():
        return json_labels_path, "json"

    elif txt_labels_path.is_dir():
        txt_files = [f for f in os.listdir(txt_labels_path) if f.endswith(".txt")]
        if txt_files:
            return txt_labels_path, "txt"

    logger.warning("No labels found in the specified dataset path and phase name.")
    return [], None


def create_image_metadata(labels_path: str) -> Tuple[Dict[str, List], Dict[str, Dict]]:
    """
    Create a dictionary containing image information and annotations indexed by image ID.

    Args:
        labels_path (str): The path to the annotation json file.

    Returns:
        - annotations_index: A dictionary where keys are image IDs and values are lists of annotations.
        - image_info_dict: A dictionary where keys are image file names without extension and values are image information dictionaries.
    """
    with open(labels_path, "r") as file:
        labels_data = json.load(file)
        id_to_idx = discretize_categories(labels_data.get("categories", [])) if "categories" in labels_data else None
        annotations_index = organize_annotations_by_image(labels_data, id_to_idx)  # check lookup is a good name?
        image_info_dict = {Path(img["file_name"]).stem: img for img in labels_data["images"]}
        return annotations_index, image_info_dict


def organize_annotations_by_image(data: Dict[str, Any], id_to_idx: Optional[Dict[int, int]]):
    """
    Use image index to lookup every annotations
    Args:
        data (Dict[str, Any]): A dictionary containing annotation data.

    Returns:
        Dict[int, List[Dict[str, Any]]]: A dictionary where keys are image IDs and values are lists of annotations.
        Annotations with "iscrowd" set to True are excluded from the index.

    """
    annotation_lookup = {}
    for anno in data["annotations"]:
        if anno["iscrowd"]:
            continue
        image_id = anno["image_id"]
        if id_to_idx:
            anno["category_id"] = id_to_idx[anno["category_id"]]
        if image_id not in annotation_lookup:
            annotation_lookup[image_id] = []
        annotation_lookup[image_id].append(anno)
    return annotation_lookup


def scale_segmentation(
    annotations: List[Dict[str, Any]], image_dimensions: Dict[str, int]
) -> Optional[List[List[float]]]:
    """
    Scale the segmentation data based on image dimensions and return a list of scaled segmentation data.

    Args:
        annotations (List[Dict[str, Any]]): A list of annotation dictionaries.
        image_dimensions (Dict[str, int]): A dictionary containing image dimensions (height and width).

    Returns:
        Optional[List[List[float]]]: A list of scaled segmentation data, where each sublist contains category_id followed by scaled (x, y) coordinates.
    """
    if annotations is None:
        return None

    seg_array_with_cat = []
    h, w = image_dimensions["height"], image_dimensions["width"]
    for anno in annotations:
        category_id = anno["category_id"]
        if "segmentation" in anno:
            seg_list = [item for sublist in anno["segmentation"] for item in sublist]
        elif "bbox" in anno:
            x, y, width, height = anno["bbox"]
            seg_list = [x, y, x + width, y, x + width, y + height, x, y + height]

        scaled_seg_data = (
            np.array(seg_list).reshape(-1, 2) / [w, h]
        ).tolist()  # make the list group in x, y pairs and scaled with image width, height
        scaled_flat_seg_data = [category_id] + list(chain(*scaled_seg_data))  # flatten the scaled_seg_data list
        seg_array_with_cat.append(scaled_flat_seg_data)

    return seg_array_with_cat


def tensorlize(data):
    try:
        img_paths, bboxes, img_ratios = zip(*data)
    except ValueError as e:
        logger.error(
            ":rotating_light: This may be caused by using old cache or another version of YOLO's cache.\n"
            ":rotating_light: Please clean the cache and try running again."
        )
        raise e
    max_box = max(bbox.size(0) for bbox in bboxes)
    padded_bbox_list = []
    for bbox in bboxes:
        padding = torch.full((max_box, 5), -1, dtype=torch.float32)
        padding[: bbox.size(0)] = bbox
        padded_bbox_list.append(padding)
    bboxes = np.stack(padded_bbox_list)
    img_paths = np.array(img_paths)
    img_ratios = np.array(img_ratios)
    return img_paths, bboxes, img_ratios