YOLO / yolo /tools /solver.py
henry000's picture
โšก๏ธ [Update] Optimizer, with more fine LR
5b9da41
raw
history blame
10.1 kB
import contextlib
import io
import json
import os
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, Optional
import torch
from loguru import logger
from pycocotools.coco import COCO
from torch import Tensor
# TODO: We may can't use CUDA?
from torch.cuda.amp import GradScaler, autocast
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from yolo.config.config import Config, DatasetConfig, TrainConfig, ValidationConfig
from yolo.model.yolo import YOLO
from yolo.tools.data_loader import StreamDataLoader, create_dataloader
from yolo.tools.drawer import draw_bboxes, draw_model
from yolo.tools.loss_functions import create_loss_function
from yolo.utils.bounding_box_utils import Vec2Box, calculate_map
from yolo.utils.dataset_utils import locate_label_paths
from yolo.utils.logging_utils import ProgressLogger, log_model_structure
from yolo.utils.model_utils import (
ExponentialMovingAverage,
PostProccess,
create_optimizer,
create_scheduler,
predicts_to_json,
)
from yolo.utils.solver_utils import calculate_ap
class ModelTrainer:
def __init__(self, cfg: Config, model: YOLO, vec2box: Vec2Box, progress: ProgressLogger, device, use_ddp: bool):
train_cfg: TrainConfig = cfg.task
self.model = model if not use_ddp else DDP(model, device_ids=[device])
self.use_ddp = use_ddp
self.vec2box = vec2box
self.device = device
self.optimizer = create_optimizer(model, train_cfg.optimizer)
self.scheduler = create_scheduler(self.optimizer, train_cfg.scheduler)
self.loss_fn = create_loss_function(cfg, vec2box)
self.progress = progress
self.num_epochs = cfg.task.epoch
self.mAPs_dict = defaultdict(list)
self.weights_dir = self.progress.save_path / "weights"
self.weights_dir.mkdir(exist_ok=True)
if not progress.quite_mode:
log_model_structure(model.model)
draw_model(model=model)
self.validation_dataloader = create_dataloader(
cfg.task.validation.data, cfg.dataset, cfg.task.validation.task, use_ddp
)
self.validator = ModelValidator(cfg.task.validation, cfg.dataset, model, vec2box, progress, device)
if getattr(train_cfg.ema, "enabled", False):
self.ema = ExponentialMovingAverage(model, decay=train_cfg.ema.decay)
else:
self.ema = None
self.scaler = GradScaler()
def train_one_batch(self, images: Tensor, targets: Tensor):
images, targets = images.to(self.device), targets.to(self.device)
self.optimizer.zero_grad()
with autocast():
predicts = self.model(images)
aux_predicts = self.vec2box(predicts["AUX"])
main_predicts = self.vec2box(predicts["Main"])
loss, loss_item = self.loss_fn(aux_predicts, main_predicts, targets)
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
return loss_item
def train_one_epoch(self, dataloader):
self.model.train()
total_loss = defaultdict(lambda: torch.tensor(0.0, device=self.device))
total_samples = 0
self.optimizer.next_epoch(len(dataloader))
for batch_size, images, targets, *_ in dataloader:
self.optimizer.next_batch()
loss_each = self.train_one_batch(images, targets)
for loss_name, loss_val in loss_each.items():
total_loss[loss_name] += loss_val * batch_size
total_samples += batch_size
self.progress.one_batch(loss_each)
for loss_val in total_loss.values():
loss_val /= total_samples
if self.scheduler:
self.scheduler.step()
return total_loss
def save_checkpoint(self, epoch_idx: int, file_name: Optional[str] = None):
file_name = file_name or f"E{epoch_idx:03d}.pt"
file_path = self.weights_dir / file_name
checkpoint = {
"epoch": epoch_idx,
"model_state_dict": self.model.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
}
if self.ema:
self.ema.apply_shadow()
checkpoint["model_state_dict_ema"] = self.model.state_dict()
self.ema.restore()
print(f"๐Ÿ’พ success save at {file_path}")
torch.save(checkpoint, file_path)
def good_epoch(self, mAPs: Dict[str, Tensor]) -> bool:
save_flag = True
for mAP_key, mAP_val in mAPs.items():
self.mAPs_dict[mAP_key].append(mAP_val)
if mAP_val < max(self.mAPs_dict[mAP_key]):
save_flag = False
return save_flag
def solve(self, dataloader: DataLoader):
logger.info("๐Ÿš„ Start Training!")
num_epochs = self.num_epochs
self.progress.start_train(num_epochs)
for epoch_idx in range(num_epochs):
if self.use_ddp:
dataloader.sampler.set_epoch(epoch_idx)
self.progress.start_one_epoch(len(dataloader), "Train", self.optimizer, epoch_idx)
epoch_loss = self.train_one_epoch(dataloader)
self.progress.finish_one_epoch(epoch_loss, epoch_idx=epoch_idx)
mAPs = self.validator.solve(self.validation_dataloader, epoch_idx=epoch_idx)
if self.good_epoch(mAPs):
self.save_checkpoint(epoch_idx=epoch_idx)
# TODO: save model if result are better than before
self.progress.finish_train()
class ModelTester:
def __init__(self, cfg: Config, model: YOLO, vec2box: Vec2Box, progress: ProgressLogger, device):
self.model = model
self.device = device
self.progress = progress
self.post_proccess = PostProccess(vec2box, cfg.task.nms)
self.save_path = progress.save_path / "images"
os.makedirs(self.save_path, exist_ok=True)
self.save_predict = getattr(cfg.task, "save_predict", None)
self.idx2label = cfg.class_list
def solve(self, dataloader: StreamDataLoader):
logger.info("๐Ÿ‘€ Start Inference!")
if isinstance(self.model, torch.nn.Module):
self.model.eval()
if dataloader.is_stream:
import cv2
import numpy as np
last_time = time.time()
try:
for idx, (images, rev_tensor, origin_frame) in enumerate(dataloader):
images = images.to(self.device)
rev_tensor = rev_tensor.to(self.device)
with torch.no_grad():
predicts = self.model(images)
predicts = self.post_proccess(predicts, rev_tensor)
img = draw_bboxes(origin_frame, predicts, idx2label=self.idx2label)
if dataloader.is_stream:
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
fps = 1 / (time.time() - last_time)
cv2.putText(img, f"FPS: {fps:.2f}", (0, 15), 0, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
last_time = time.time()
cv2.imshow("Prediction", img)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
if not self.save_predict:
continue
if self.save_predict != False:
save_image_path = self.save_path / f"frame{idx:03d}.png"
img.save(save_image_path)
logger.info(f"๐Ÿ’พ Saved visualize image at {save_image_path}")
except (KeyboardInterrupt, Exception) as e:
dataloader.stop_event.set()
dataloader.stop()
if isinstance(e, KeyboardInterrupt):
logger.error("User Keyboard Interrupt")
else:
raise e
dataloader.stop()
class ModelValidator:
def __init__(
self,
validation_cfg: ValidationConfig,
dataset_cfg: DatasetConfig,
model: YOLO,
vec2box: Vec2Box,
progress: ProgressLogger,
device,
):
self.model = model
self.device = device
self.progress = progress
self.post_proccess = PostProccess(vec2box, validation_cfg.nms)
self.json_path = self.progress.save_path / "predict.json"
with contextlib.redirect_stdout(io.StringIO()):
# TODO: load with config file
json_path, _ = locate_label_paths(Path(dataset_cfg.path), dataset_cfg.get("val", "val"))
if json_path:
self.coco_gt = COCO(json_path)
def solve(self, dataloader, epoch_idx=-1):
# logger.info("๐Ÿงช Start Validation!")
self.model.eval()
predict_json, mAPs = [], defaultdict(list)
self.progress.start_one_epoch(len(dataloader), task="Validate")
for batch_size, images, targets, rev_tensor, img_paths in dataloader:
images, targets, rev_tensor = images.to(self.device), targets.to(self.device), rev_tensor.to(self.device)
with torch.no_grad():
predicts = self.model(images)
predicts = self.post_proccess(predicts)
for idx, predict in enumerate(predicts):
mAP = calculate_map(predict, targets[idx])
for mAP_key, mAP_val in mAP.items():
mAPs[mAP_key].append(mAP_val)
avg_mAPs = {key: torch.mean(torch.stack(val)) for key, val in mAPs.items()}
self.progress.one_batch(avg_mAPs)
predict_json.extend(predicts_to_json(img_paths, predicts, rev_tensor))
self.progress.finish_one_epoch(avg_mAPs, epoch_idx=epoch_idx)
with open(self.json_path, "w") as f:
json.dump(predict_json, f)
if hasattr(self, "coco_gt"):
self.progress.start_pycocotools()
result = calculate_ap(self.coco_gt, predict_json)
self.progress.finish_pycocotools(result, epoch_idx)
return avg_mAPs