YOLO / demo /hf_demo.py
henry000's picture
πŸ› [Fix] #56 bugs, create_converter -> Vec2Box
054a1c7
raw
history blame
2.3 kB
import sys
from pathlib import Path
import gradio
import torch
from omegaconf import OmegaConf
sys.path.append(str(Path(__file__).resolve().parent.parent))
from yolo import (
AugmentationComposer,
NMSConfig,
PostProccess,
create_converter,
create_model,
draw_bboxes,
)
DEFAULT_MODEL = "v9-c"
IMAGE_SIZE = (640, 640)
def load_model(model_name, device):
model_cfg = OmegaConf.load(f"yolo/config/model/{model_name}.yaml")
model_cfg.model.auxiliary = {}
model = create_model(model_cfg, True)
model.to(device).eval()
return model, model_cfg
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model, model_cfg = load_model(DEFAULT_MODEL, device)
converter = create_converter(model_cfg.name, model, model_cfg.anchor, IMAGE_SIZE, device)
class_list = OmegaConf.load("yolo/config/dataset/coco.yaml").class_list
transform = AugmentationComposer([])
def predict(model_name, image, nms_confidence, nms_iou):
global DEFAULT_MODEL, model, device, converter, class_list, post_proccess
if model_name != DEFAULT_MODEL:
model, model_cfg = load_model(model_name, device)
converter = create_converter(model_cfg.name, model, model_cfg.anchor, IMAGE_SIZE, device)
DEFAULT_MODEL = model_name
image_tensor, _, rev_tensor = transform(image)
image_tensor = image_tensor.to(device)[None]
rev_tensor = rev_tensor.to(device)[None]
nms_config = NMSConfig(nms_confidence, nms_iou)
post_proccess = PostProccess(converter, nms_config)
with torch.no_grad():
predict = model(image_tensor)
pred_bbox = post_proccess(predict, rev_tensor)
result_image = draw_bboxes(image, pred_bbox, idx2label=class_list)
return result_image
interface = gradio.Interface(
fn=predict,
inputs=[
gradio.components.Dropdown(choices=["v9-c", "v9-m", "v9-s"], value="v9-c", label="Model Name"),
gradio.components.Image(type="pil", label="Input Image"),
gradio.components.Slider(0, 1, step=0.01, value=0.5, label="NMS Confidence Threshold"),
gradio.components.Slider(0, 1, step=0.01, value=0.5, label="NMS IoU Threshold"),
],
outputs=gradio.components.Image(type="pil", label="Output Image"),
)
if __name__ == "__main__":
interface.launch()