YOLO / yolo /model /module.py
henry000's picture
🔧 [Update] the config, remove conv, using Pool
b67aac7
raw
history blame
16.8 kB
from typing import Optional, Tuple
import torch
from torch import Tensor, nn
from torch.nn.common_types import _size_2_t
from yolo.tools.module_helper import auto_pad, get_activation
class Conv(nn.Module):
"""A basic convolutional block that includes convolution, batch normalization, and activation."""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: _size_2_t,
*,
activation: Optional[str] = "SiLU",
**kwargs
):
super().__init__()
kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs))
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs)
self.bn = nn.BatchNorm2d(out_channels)
self.act = get_activation(activation)
def forward(self, x: Tensor) -> Tensor:
return self.act(self.bn(self.conv(x)))
class Pool(nn.Module):
"""A generic pooling block supporting 'max' and 'avg' pooling methods."""
def __init__(self, method: str = "max", kernel_size: _size_2_t = 2, **kwargs):
super().__init__()
kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs))
pool_classes = {"max": nn.MaxPool2d, "avg": nn.AvgPool2d}
self.pool = pool_classes[method.lower()](kernel_size=kernel_size, **kwargs)
def forward(self, x: Tensor) -> Tensor:
return self.pool(x)
class ADown(nn.Module):
"""Downsampling module combining average and max pooling with convolution for feature reduction."""
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
half_in_channels = in_channels // 2
half_out_channels = out_channels // 2
mid_layer = {"kernel_size": 3, "stride": 2}
self.avg_pool = Pool("avg", kernel_size=2, stride=1)
self.conv1 = Conv(half_in_channels, half_out_channels, **mid_layer)
self.max_pool = Pool("max", **mid_layer)
self.conv2 = Conv(half_in_channels, half_out_channels, kernel_size=1)
def forward(self, x: Tensor) -> Tensor:
x = self.avg_pool(x)
x1, x2 = x.chunk(2, dim=1)
x1 = self.conv1(x1)
x2 = self.max_pool(x2)
x2 = self.conv2(x2)
return torch.cat((x1, x2), dim=1)
class CBLinear(nn.Module):
"""Convolutional block that outputs multiple feature maps split along the channel dimension."""
def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 1, **kwargs):
super(CBLinear, self).__init__()
kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs))
self.conv = nn.Conv2d(in_channels, sum(out_channels), kernel_size, **kwargs)
self.out_channels = out_channels
def forward(self, x: Tensor) -> Tuple[Tensor]:
x = self.conv(x)
return x.split(self.out_channels, dim=1)
class SPPELAN(nn.Module):
"""SPPELAN module comprising multiple pooling and convolution layers."""
def __init__(self, in_channels, out_channels, neck_channels=Optional[int]):
super(SPPELAN, self).__init__()
neck_channels = neck_channels or out_channels // 2
self.conv1 = Conv(in_channels, neck_channels, kernel_size=1)
self.pools = nn.ModuleList([Pool("max", 5, stride=1) for _ in range(3)])
self.conv5 = Conv(4 * neck_channels, out_channels, kernel_size=1)
def forward(self, x: Tensor) -> Tensor:
features = [self.conv1(x)]
for pool in self.pools:
features.append(pool(features[-1]))
return self.conv5(torch.cat(features, dim=1))
#### -- ####
# RepVGG
class RepConv(nn.Module):
# https://github.com/DingXiaoH/RepVGG
def __init__(
self, in_channels, out_channels, kernel_size=3, padding=None, stride=1, groups=1, act=nn.SiLU(), deploy=False
):
super().__init__()
self.deploy = deploy
self.conv1 = Conv(in_channels, out_channels, kernel_size, stride=stride, groups=groups, activation=False)
self.conv2 = Conv(in_channels, out_channels, 1, stride=stride, groups=groups, activation=False)
self.act = act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
return self.act(self.conv1(x) + self.conv2(x))
def forward_fuse(self, x):
return self.act(self.conv(x))
# to be implement
# def fuse_convs(self):
def fuse_conv_bn(self, conv, bn):
std = (bn.running_var + bn.eps).sqrt()
bias = bn.bias - bn.running_mean * bn.weight / std
t = (bn.weight / std).reshape(-1, 1, 1, 1)
weights = conv.weight * t
bn = nn.Identity()
conv = nn.Conv2d(
in_channels=conv.in_channels,
out_channels=conv.out_channels,
kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding,
dilation=conv.dilation,
groups=conv.groups,
bias=True,
padding_mode=conv.padding_mode,
)
conv.weight = torch.nn.Parameter(weights)
conv.bias = torch.nn.Parameter(bias)
return conv
# ResNet
class Res(nn.Module):
# ResNet bottleneck
def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.25):
super().__init__()
h_channels = int(in_channels * ratio)
self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
self.cv2 = Conv(h_channels, h_channels, 3, 1, groups=groups, act=act)
self.cv3 = Conv(h_channels, out_channels, 1, 1, act=act)
def forward(self, x):
return x + self.cv3(self.cv2(self.cv1(x)))
class RepRes(nn.Module):
# RepResNet bottleneck
def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.25):
super().__init__()
h_channels = int(in_channels * ratio)
self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
self.cv2 = RepConv(h_channels, h_channels, 3, 1, groups=groups, act=act)
self.cv3 = Conv(h_channels, out_channels, 1, 1, act=act)
def forward(self, x):
return x + self.cv3(self.cv2(self.cv1(x)))
class ConvBlock(nn.Module):
# ConvBlock
def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):
super().__init__()
h_channels = int(in_channels * ratio)
self.cv1 = (
Conv(in_channels, in_channels, 3, 1, act=act)
if repeat == 1
else Conv(in_channels, h_channels, 3, 1, act=act)
)
self.cb = (
nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
if repeat > 2
else nn.Identity()
)
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
def forward(self, x):
return self.cv2(self.cb(self.cv1(x)))
class RepConvBlock(nn.Module):
# ConvBlock
def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):
super().__init__()
h_channels = int(in_channels * ratio)
self.cv1 = (
Conv(in_channels, in_channels, 3, 1, act=act)
if repeat == 1
else RepConv(in_channels, h_channels, 3, 1, act=act)
)
self.cb = (
nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
if repeat > 2
else nn.Identity()
)
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
def forward(self, x):
return self.cv2(self.cb(self.cv1(x)))
class ResConvBlock(nn.Module):
# ResConvBlock
def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):
super().__init__()
h_channels = int(in_channels * ratio)
self.cv1 = (
Conv(in_channels, in_channels, 3, 1, act=act)
if repeat == 1
else Conv(in_channels, h_channels, 3, 1, act=act)
)
self.cb = (
nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
if repeat > 2
else nn.Identity()
)
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
def forward(self, x):
return x + self.cv2(self.cb(self.cv1(x)))
class ResRepConvBlock(nn.Module):
# ResConvBlock
def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):
super().__init__()
h_channels = int(in_channels * ratio)
self.cv1 = (
Conv(in_channels, in_channels, 3, 1, act=act)
if repeat == 1
else RepConv(in_channels, h_channels, 3, 1, act=act)
)
self.cb = (
nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
if repeat > 2
else nn.Identity()
)
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
def forward(self, x):
return x + self.cv2(self.cb(self.cv1(x)))
# Darknet
class Dark(nn.Module):
# DarkNet bottleneck
def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.5):
super().__init__()
h_channels = int(in_channels * ratio)
self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
self.cv2 = Conv(h_channels, out_channels, 3, 1, groups=groups, act=act)
def forward(self, x):
return x + self.cv2(self.cv1(x))
class RepDark(nn.Module):
# RepDarkNet bottleneck
def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.5):
super().__init__()
h_channels = int(in_channels * ratio)
self.cv1 = RepConv(in_channels, h_channels, 3, 1, groups=groups, act=act)
self.cv2 = Conv(h_channels, out_channels, 1, 1, act=act)
def forward(self, x):
return x + self.cv2(self.cv1(x))
# CSPNet
class CSP(nn.Module):
# CSPNet
def __init__(self, in_channels, out_channels, repeat=1, cb_repeat=2, act=nn.ReLU()):
super().__init__()
h_channels = in_channels // 2
self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
self.cb = nn.Sequential(*(ResConvBlock(h_channels, act=act, repeat=cb_repeat) for _ in range(repeat)))
self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)
def forward(self, x):
x = list(self.cv1(x).chunk(2, 1))
x = torch.cat((self.cb(x[0]), x[1]), 1)
x = self.cv2(x)
return x
class CSPDark(nn.Module):
# CSPNet
def __init__(self, in_channels, out_channels, repeat=1, groups=1, act=nn.ReLU(), ratio=1.0):
super().__init__()
h_channels = in_channels // 2
self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
self.cb = nn.Sequential(
*(Dark(h_channels, h_channels, groups=groups, act=act, ratio=ratio) for _ in range(repeat))
)
self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)
def forward(self, x):
y = list(self.cv1(x).chunk(2, 1))
return self.cv2(torch.cat((self.cb(y[0]), y[1]), 1))
# ELAN
class ELAN(nn.Module):
# ELAN
def __init__(self, in_channels, out_channels, med_channels, elan_repeat=2, cb_repeat=2, ratio=1.0):
super().__init__()
h_channels = med_channels // 2
self.cv1 = Conv(in_channels, med_channels, 1, 1)
self.cb = nn.ModuleList(ConvBlock(h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
self.cv2 = Conv((2 + elan_repeat) * h_channels, out_channels, 1, 1)
def forward(self, x):
y = list(self.cv1(x).chunk(2, 1))
y.extend((m(y[-1])) for m in self.cb)
return self.cv2(torch.cat(y, 1))
class CSPELAN(nn.Module):
# ELAN
def __init__(self, in_channels, out_channels, med_channels, elan_repeat=2, cb_repeat=2, ratio=1.0):
super().__init__()
h_channels = med_channels // 2
self.cv1 = Conv(in_channels, med_channels, 1, 1)
self.cb = nn.ModuleList(CSP(h_channels, h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
self.cv2 = Conv((2 + elan_repeat) * h_channels, out_channels, 1, 1)
def forward(self, x):
y = list(self.cv1(x).chunk(2, 1))
y.extend((m(y[-1])) for m in self.cb)
return self.cv2(torch.cat(y, 1))
class Concat(nn.Module):
def __init__(self, dim=1):
super(Concat, self).__init__()
self.dim = dim
def forward(self, x):
return torch.cat(x, self.dim)
# TODO: check if Mit
class SPPCSPConv(nn.Module):
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
def __init__(self, in_channels, out_channels, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
super(SPPCSPConv, self).__init__()
c_ = int(2 * out_channels * e) # hidden channels
self.cv1 = Conv(in_channels, c_, 1)
self.cv2 = Conv(in_channels, c_, 1)
self.cv3 = Conv(c_, c_, 3)
self.cv4 = Conv(c_, c_, 1)
self.m = nn.ModuleList([Pool(method="max", kernel_size=x, stride=1, padding=x // 2) for x in k])
self.cv5 = Conv(4 * c_, c_, 1)
self.cv6 = Conv(c_, c_, 3)
self.cv7 = Conv(2 * c_, out_channels, 1)
def forward(self, x):
x1 = self.cv4(self.cv3(self.cv1(x)))
y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
y2 = self.cv2(x)
return self.cv7(torch.cat((y1, y2), dim=1))
class ImplicitA(nn.Module):
"""
Implement YOLOR - implicit knowledge(Add), paper: https://arxiv.org/abs/2105.04206
"""
def __init__(self, channel: int, mean: float = 0.0, std: float = 0.02):
super().__init__()
self.channel = channel
self.mean = mean
self.std = std
self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1))
nn.init.normal_(self.implicit, mean=mean, std=self.std)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.implicit + x
class ImplicitM(nn.Module):
"""
Implement YOLOR - implicit knowledge(multiply), paper: https://arxiv.org/abs/2105.04206
"""
def __init__(self, channel: int, mean: float = 1.0, std: float = 0.02):
super().__init__()
self.channel = channel
self.mean = mean
self.std = std
self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1))
nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.implicit * x
class UpSample(nn.Module):
def __init__(self, **kwargs):
super().__init__()
self.UpSample = nn.Upsample(**kwargs)
def forward(self, x):
return self.UpSample(x)
class IDetect(nn.Module):
"""
#TODO: Add Detect class, change IDetect base class
"""
stride = None # strides computed during build
export = False # onnx export
end2end = False
include_nms = False
concat = False
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
super(IDetect, self).__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
self.register_buffer("anchors", a) # shape(nl,na,2)
self.register_buffer("anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch)
def forward(self, x):
# x = x.copy() # for profiling
z = [] # inference output
self.training |= self.export
for i in range(self.nl):
x[i] = self.m[i](self.ia[i](x[i])) # conv
x[i] = self.im[i](x[i])
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
y = x[i].sigmoid()
y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)