File size: 16,828 Bytes
930952c
4f5ca28
30d2275
4f5ca28
 
 
 
 
 
 
 
 
 
b67aac7
 
 
 
 
 
 
4f5ca28
 
 
 
 
 
 
 
 
 
 
 
 
 
b67aac7
4f5ca28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
930952c
4f5ca28
 
 
 
 
 
 
 
 
 
 
 
b67aac7
4f5ca28
 
 
 
 
 
 
 
 
 
30d2275
 
 
 
 
31cab2b
 
 
30d2275
 
31cab2b
b67aac7
 
30d2275
 
 
 
 
 
 
 
 
 
80ba8d4
 
 
 
 
 
 
 
 
31cab2b
 
 
 
 
 
 
 
 
 
 
80ba8d4
 
 
 
30d2275
 
 
 
 
97681c2
30d2275
 
 
 
 
 
 
 
 
 
 
 
 
 
97681c2
30d2275
 
 
 
 
 
 
 
 
 
 
 
 
 
97681c2
30d2275
 
 
 
97681c2
 
 
 
 
 
 
 
 
 
30d2275
 
 
 
 
 
 
 
97681c2
30d2275
 
 
 
97681c2
 
 
 
 
 
 
 
 
 
30d2275
 
 
 
 
 
 
 
97681c2
30d2275
 
 
 
97681c2
 
 
 
 
 
 
 
 
 
30d2275
 
 
 
 
 
 
 
97681c2
30d2275
 
 
 
97681c2
 
 
 
 
 
 
 
 
 
30d2275
 
 
 
 
 
 
 
 
97681c2
30d2275
 
 
 
 
 
 
 
 
 
 
 
 
97681c2
30d2275
 
 
 
 
 
 
 
 
 
 
 
 
 
4f5ca28
30d2275
 
 
 
 
 
 
4f5ca28
 
 
 
30d2275
 
 
 
97681c2
30d2275
 
 
 
 
97681c2
 
 
30d2275
 
 
 
 
 
 
 
 
 
 
 
97681c2
30d2275
 
 
 
 
 
97681c2
30d2275
 
 
 
 
 
 
 
 
 
 
97681c2
30d2275
 
 
 
 
 
97681c2
30d2275
 
 
 
 
 
 
97681c2
 
 
542860e
97681c2
 
 
 
 
 
 
 
 
 
 
 
 
b67aac7
 
 
 
 
 
 
 
97681c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
from typing import Optional, Tuple

import torch
from torch import Tensor, nn
from torch.nn.common_types import _size_2_t

from yolo.tools.module_helper import auto_pad, get_activation


class Conv(nn.Module):
    """A basic convolutional block that includes convolution, batch normalization, and activation."""

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: _size_2_t,
        *,
        activation: Optional[str] = "SiLU",
        **kwargs
    ):
        super().__init__()
        kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs))
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels)
        self.act = get_activation(activation)

    def forward(self, x: Tensor) -> Tensor:
        return self.act(self.bn(self.conv(x)))


class Pool(nn.Module):
    """A generic pooling block supporting 'max' and 'avg' pooling methods."""

    def __init__(self, method: str = "max", kernel_size: _size_2_t = 2, **kwargs):
        super().__init__()
        kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs))
        pool_classes = {"max": nn.MaxPool2d, "avg": nn.AvgPool2d}
        self.pool = pool_classes[method.lower()](kernel_size=kernel_size, **kwargs)

    def forward(self, x: Tensor) -> Tensor:
        return self.pool(x)


class ADown(nn.Module):
    """Downsampling module combining average and max pooling with convolution for feature reduction."""

    def __init__(self, in_channels: int, out_channels: int):
        super().__init__()
        half_in_channels = in_channels // 2
        half_out_channels = out_channels // 2
        mid_layer = {"kernel_size": 3, "stride": 2}
        self.avg_pool = Pool("avg", kernel_size=2, stride=1)
        self.conv1 = Conv(half_in_channels, half_out_channels, **mid_layer)
        self.max_pool = Pool("max", **mid_layer)
        self.conv2 = Conv(half_in_channels, half_out_channels, kernel_size=1)

    def forward(self, x: Tensor) -> Tensor:
        x = self.avg_pool(x)
        x1, x2 = x.chunk(2, dim=1)
        x1 = self.conv1(x1)
        x2 = self.max_pool(x2)
        x2 = self.conv2(x2)
        return torch.cat((x1, x2), dim=1)


class CBLinear(nn.Module):
    """Convolutional block that outputs multiple feature maps split along the channel dimension."""

    def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 1, **kwargs):
        super(CBLinear, self).__init__()
        kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs))
        self.conv = nn.Conv2d(in_channels, sum(out_channels), kernel_size, **kwargs)
        self.out_channels = out_channels

    def forward(self, x: Tensor) -> Tuple[Tensor]:
        x = self.conv(x)
        return x.split(self.out_channels, dim=1)


class SPPELAN(nn.Module):
    """SPPELAN module comprising multiple pooling and convolution layers."""

    def __init__(self, in_channels, out_channels, neck_channels=Optional[int]):
        super(SPPELAN, self).__init__()
        neck_channels = neck_channels or out_channels // 2

        self.conv1 = Conv(in_channels, neck_channels, kernel_size=1)
        self.pools = nn.ModuleList([Pool("max", 5, stride=1) for _ in range(3)])
        self.conv5 = Conv(4 * neck_channels, out_channels, kernel_size=1)

    def forward(self, x: Tensor) -> Tensor:
        features = [self.conv1(x)]
        for pool in self.pools:
            features.append(pool(features[-1]))
        return self.conv5(torch.cat(features, dim=1))


#### -- ####


# RepVGG
class RepConv(nn.Module):
    # https://github.com/DingXiaoH/RepVGG
    def __init__(
        self, in_channels, out_channels, kernel_size=3, padding=None, stride=1, groups=1, act=nn.SiLU(), deploy=False
    ):

        super().__init__()
        self.deploy = deploy
        self.conv1 = Conv(in_channels, out_channels, kernel_size, stride=stride, groups=groups, activation=False)
        self.conv2 = Conv(in_channels, out_channels, 1, stride=stride, groups=groups, activation=False)
        self.act = act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        return self.act(self.conv1(x) + self.conv2(x))

    def forward_fuse(self, x):
        return self.act(self.conv(x))

    # to be implement
    # def fuse_convs(self):
    def fuse_conv_bn(self, conv, bn):

        std = (bn.running_var + bn.eps).sqrt()
        bias = bn.bias - bn.running_mean * bn.weight / std

        t = (bn.weight / std).reshape(-1, 1, 1, 1)
        weights = conv.weight * t

        bn = nn.Identity()
        conv = nn.Conv2d(
            in_channels=conv.in_channels,
            out_channels=conv.out_channels,
            kernel_size=conv.kernel_size,
            stride=conv.stride,
            padding=conv.padding,
            dilation=conv.dilation,
            groups=conv.groups,
            bias=True,
            padding_mode=conv.padding_mode,
        )

        conv.weight = torch.nn.Parameter(weights)
        conv.bias = torch.nn.Parameter(bias)
        return conv


# ResNet
class Res(nn.Module):
    # ResNet bottleneck
    def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.25):

        super().__init__()

        h_channels = int(in_channels * ratio)
        self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
        self.cv2 = Conv(h_channels, h_channels, 3, 1, groups=groups, act=act)
        self.cv3 = Conv(h_channels, out_channels, 1, 1, act=act)

    def forward(self, x):
        return x + self.cv3(self.cv2(self.cv1(x)))


class RepRes(nn.Module):
    # RepResNet bottleneck
    def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.25):

        super().__init__()

        h_channels = int(in_channels * ratio)
        self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
        self.cv2 = RepConv(h_channels, h_channels, 3, 1, groups=groups, act=act)
        self.cv3 = Conv(h_channels, out_channels, 1, 1, act=act)

    def forward(self, x):
        return x + self.cv3(self.cv2(self.cv1(x)))


class ConvBlock(nn.Module):
    # ConvBlock
    def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):

        super().__init__()

        h_channels = int(in_channels * ratio)
        self.cv1 = (
            Conv(in_channels, in_channels, 3, 1, act=act)
            if repeat == 1
            else Conv(in_channels, h_channels, 3, 1, act=act)
        )
        self.cb = (
            nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
            if repeat > 2
            else nn.Identity()
        )
        self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)

    def forward(self, x):
        return self.cv2(self.cb(self.cv1(x)))


class RepConvBlock(nn.Module):
    # ConvBlock
    def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):

        super().__init__()

        h_channels = int(in_channels * ratio)
        self.cv1 = (
            Conv(in_channels, in_channels, 3, 1, act=act)
            if repeat == 1
            else RepConv(in_channels, h_channels, 3, 1, act=act)
        )
        self.cb = (
            nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
            if repeat > 2
            else nn.Identity()
        )
        self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)

    def forward(self, x):
        return self.cv2(self.cb(self.cv1(x)))


class ResConvBlock(nn.Module):
    # ResConvBlock
    def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):

        super().__init__()

        h_channels = int(in_channels * ratio)
        self.cv1 = (
            Conv(in_channels, in_channels, 3, 1, act=act)
            if repeat == 1
            else Conv(in_channels, h_channels, 3, 1, act=act)
        )
        self.cb = (
            nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
            if repeat > 2
            else nn.Identity()
        )
        self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)

    def forward(self, x):
        return x + self.cv2(self.cb(self.cv1(x)))


class ResRepConvBlock(nn.Module):
    # ResConvBlock
    def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):

        super().__init__()

        h_channels = int(in_channels * ratio)
        self.cv1 = (
            Conv(in_channels, in_channels, 3, 1, act=act)
            if repeat == 1
            else RepConv(in_channels, h_channels, 3, 1, act=act)
        )
        self.cb = (
            nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
            if repeat > 2
            else nn.Identity()
        )
        self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)

    def forward(self, x):
        return x + self.cv2(self.cb(self.cv1(x)))


# Darknet
class Dark(nn.Module):
    # DarkNet bottleneck
    def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.5):

        super().__init__()

        h_channels = int(in_channels * ratio)
        self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
        self.cv2 = Conv(h_channels, out_channels, 3, 1, groups=groups, act=act)

    def forward(self, x):
        return x + self.cv2(self.cv1(x))


class RepDark(nn.Module):
    # RepDarkNet bottleneck
    def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.5):

        super().__init__()

        h_channels = int(in_channels * ratio)
        self.cv1 = RepConv(in_channels, h_channels, 3, 1, groups=groups, act=act)
        self.cv2 = Conv(h_channels, out_channels, 1, 1, act=act)

    def forward(self, x):
        return x + self.cv2(self.cv1(x))


# CSPNet
class CSP(nn.Module):
    # CSPNet
    def __init__(self, in_channels, out_channels, repeat=1, cb_repeat=2, act=nn.ReLU()):
        super().__init__()
        h_channels = in_channels // 2
        self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
        self.cb = nn.Sequential(*(ResConvBlock(h_channels, act=act, repeat=cb_repeat) for _ in range(repeat)))
        self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)

    def forward(self, x):
        x = list(self.cv1(x).chunk(2, 1))
        x = torch.cat((self.cb(x[0]), x[1]), 1)
        x = self.cv2(x)
        return x


class CSPDark(nn.Module):
    # CSPNet
    def __init__(self, in_channels, out_channels, repeat=1, groups=1, act=nn.ReLU(), ratio=1.0):

        super().__init__()

        h_channels = in_channels // 2
        self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
        self.cb = nn.Sequential(
            *(Dark(h_channels, h_channels, groups=groups, act=act, ratio=ratio) for _ in range(repeat))
        )
        self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)

    def forward(self, x):

        y = list(self.cv1(x).chunk(2, 1))

        return self.cv2(torch.cat((self.cb(y[0]), y[1]), 1))


# ELAN
class ELAN(nn.Module):
    # ELAN
    def __init__(self, in_channels, out_channels, med_channels, elan_repeat=2, cb_repeat=2, ratio=1.0):

        super().__init__()

        h_channels = med_channels // 2
        self.cv1 = Conv(in_channels, med_channels, 1, 1)
        self.cb = nn.ModuleList(ConvBlock(h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
        self.cv2 = Conv((2 + elan_repeat) * h_channels, out_channels, 1, 1)

    def forward(self, x):

        y = list(self.cv1(x).chunk(2, 1))
        y.extend((m(y[-1])) for m in self.cb)

        return self.cv2(torch.cat(y, 1))


class CSPELAN(nn.Module):
    # ELAN
    def __init__(self, in_channels, out_channels, med_channels, elan_repeat=2, cb_repeat=2, ratio=1.0):

        super().__init__()

        h_channels = med_channels // 2
        self.cv1 = Conv(in_channels, med_channels, 1, 1)
        self.cb = nn.ModuleList(CSP(h_channels, h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
        self.cv2 = Conv((2 + elan_repeat) * h_channels, out_channels, 1, 1)

    def forward(self, x):

        y = list(self.cv1(x).chunk(2, 1))
        y.extend((m(y[-1])) for m in self.cb)

        return self.cv2(torch.cat(y, 1))


class Concat(nn.Module):
    def __init__(self, dim=1):
        super(Concat, self).__init__()
        self.dim = dim

    def forward(self, x):
        return torch.cat(x, self.dim)


# TODO: check if Mit
class SPPCSPConv(nn.Module):
    # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, in_channels, out_channels, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
        super(SPPCSPConv, self).__init__()
        c_ = int(2 * out_channels * e)  # hidden channels
        self.cv1 = Conv(in_channels, c_, 1)
        self.cv2 = Conv(in_channels, c_, 1)
        self.cv3 = Conv(c_, c_, 3)
        self.cv4 = Conv(c_, c_, 1)
        self.m = nn.ModuleList([Pool(method="max", kernel_size=x, stride=1, padding=x // 2) for x in k])
        self.cv5 = Conv(4 * c_, c_, 1)
        self.cv6 = Conv(c_, c_, 3)
        self.cv7 = Conv(2 * c_, out_channels, 1)

    def forward(self, x):
        x1 = self.cv4(self.cv3(self.cv1(x)))
        y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
        y2 = self.cv2(x)
        return self.cv7(torch.cat((y1, y2), dim=1))


class ImplicitA(nn.Module):
    """
    Implement YOLOR - implicit knowledge(Add), paper: https://arxiv.org/abs/2105.04206
    """

    def __init__(self, channel: int, mean: float = 0.0, std: float = 0.02):
        super().__init__()
        self.channel = channel
        self.mean = mean
        self.std = std

        self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1))
        nn.init.normal_(self.implicit, mean=mean, std=self.std)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.implicit + x


class ImplicitM(nn.Module):
    """
    Implement YOLOR - implicit knowledge(multiply), paper: https://arxiv.org/abs/2105.04206
    """

    def __init__(self, channel: int, mean: float = 1.0, std: float = 0.02):
        super().__init__()
        self.channel = channel
        self.mean = mean
        self.std = std

        self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1))
        nn.init.normal_(self.implicit, mean=self.mean, std=self.std)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.implicit * x


class UpSample(nn.Module):
    def __init__(self, **kwargs):
        super().__init__()
        self.UpSample = nn.Upsample(**kwargs)

    def forward(self, x):
        return self.UpSample(x)


class IDetect(nn.Module):
    """
    #TODO: Add Detect class, change IDetect base class
    """

    stride = None  # strides computed during build
    export = False  # onnx export
    end2end = False
    include_nms = False
    concat = False

    def __init__(self, nc=80, anchors=(), ch=()):  # detection layer
        super(IDetect, self).__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        a = torch.tensor(anchors).float().view(self.nl, -1, 2)
        self.register_buffer("anchors", a)  # shape(nl,na,2)
        self.register_buffer("anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2))  # shape(nl,1,na,1,1,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv

        self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
        self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch)

    def forward(self, x):
        # x = x.copy()  # for profiling
        z = []  # inference output
        self.training |= self.export
        for i in range(self.nl):
            x[i] = self.m[i](self.ia[i](x[i]))  # conv
            x[i] = self.im[i](x[i])
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i] = self._make_grid(nx, ny).to(x[i].device)

                y = x[i].sigmoid()
                y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)