YOLO / yolo /tools /data_loader.py
Ramon2's picture
Fix coco style bounding box annotations (#116)
8e564ea unverified
raw
history blame
12.9 kB
from pathlib import Path
from queue import Empty, Queue
from statistics import mean
from threading import Event, Thread
from typing import Generator, List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from rich.progress import track
from torch import Tensor
from torch.utils.data import DataLoader, Dataset
from yolo.config.config import DataConfig, DatasetConfig
from yolo.tools.data_augmentation import *
from yolo.tools.data_augmentation import AugmentationComposer
from yolo.tools.dataset_preparation import prepare_dataset
from yolo.utils.dataset_utils import (
create_image_metadata,
locate_label_paths,
scale_segmentation,
tensorlize,
)
from yolo.utils.logger import logger
class YoloDataset(Dataset):
def __init__(self, data_cfg: DataConfig, dataset_cfg: DatasetConfig, phase: str = "train2017"):
augment_cfg = data_cfg.data_augment
self.image_size = data_cfg.image_size
phase_name = dataset_cfg.get(phase, phase)
self.batch_size = data_cfg.batch_size
self.dynamic_shape = getattr(data_cfg, "dynamic_shape", False)
self.base_size = mean(self.image_size)
transforms = [eval(aug)(prob) for aug, prob in augment_cfg.items()]
self.transform = AugmentationComposer(transforms, self.image_size, self.base_size)
self.transform.get_more_data = self.get_more_data
self.img_paths, self.bboxes, self.ratios = tensorlize(self.load_data(Path(dataset_cfg.path), phase_name))
def load_data(self, dataset_path: Path, phase_name: str):
"""
Loads data from a cache or generates a new cache for a specific dataset phase.
Parameters:
dataset_path (Path): The root path to the dataset directory.
phase_name (str): The specific phase of the dataset (e.g., 'train', 'test') to load or generate data for.
Returns:
dict: The loaded data from the cache for the specified phase.
"""
cache_path = dataset_path / f"{phase_name}.cache"
if not cache_path.exists():
logger.info(f":factory: Generating {phase_name} cache")
data = self.filter_data(dataset_path, phase_name, self.dynamic_shape)
torch.save(data, cache_path)
else:
try:
data = torch.load(cache_path, weights_only=False)
except Exception as e:
logger.error(
f":rotating_light: Failed to load the cache at '{cache_path}'.\n"
":rotating_light: This may be caused by using cache from different other YOLO.\n"
":rotating_light: Please clean the cache and try running again."
)
raise e
logger.info(f":package: Loaded {phase_name} cache")
return data
def filter_data(self, dataset_path: Path, phase_name: str, sort_image: bool = False) -> list:
"""
Filters and collects dataset information by pairing images with their corresponding labels.
Parameters:
images_path (Path): Path to the directory containing image files.
labels_path (str): Path to the directory containing label files.
sort_image (bool): If True, sorts the dataset by the width-to-height ratio of images in descending order.
Returns:
list: A list of tuples, each containing the path to an image file and its associated segmentation as a tensor.
"""
images_path = dataset_path / "images" / phase_name
labels_path, data_type = locate_label_paths(dataset_path, phase_name)
images_list = sorted([p.name for p in Path(images_path).iterdir() if p.is_file()])
if data_type == "json":
annotations_index, image_info_dict = create_image_metadata(labels_path)
data = []
valid_inputs = 0
for image_name in track(images_list, description="Filtering data"):
if not image_name.lower().endswith((".jpg", ".jpeg", ".png")):
continue
image_id = Path(image_name).stem
if data_type == "json":
image_info = image_info_dict.get(image_id, None)
if image_info is None:
continue
annotations = annotations_index.get(image_info["id"], [])
image_seg_annotations = scale_segmentation(annotations, image_info)
elif data_type == "txt":
label_path = labels_path / f"{image_id}.txt"
if not label_path.is_file():
continue
with open(label_path, "r") as file:
image_seg_annotations = [list(map(float, line.strip().split())) for line in file]
else:
image_seg_annotations = []
labels = self.load_valid_labels(image_id, image_seg_annotations)
img_path = images_path / image_name
if sort_image:
with Image.open(img_path) as img:
width, height = img.size
else:
width, height = 0, 1
data.append((img_path, labels, width / height))
valid_inputs += 1
data = sorted(data, key=lambda x: x[2], reverse=True)
logger.info(f"Recorded {valid_inputs}/{len(images_list)} valid inputs")
return data
def load_valid_labels(self, label_path: str, seg_data_one_img: list) -> Union[Tensor, None]:
"""
Loads valid COCO style segmentation data (values between [0, 1]) and converts it to bounding box coordinates
by finding the minimum and maximum x and y values.
Parameters:
label_path (str): The filepath to the label file containing annotation data.
seg_data_one_img (list): The actual list of annotations (in segmentation format)
Returns:
Tensor or None: A tensor of all valid bounding boxes if any are found; otherwise, None.
"""
bboxes = []
for seg_data in seg_data_one_img:
cls = seg_data[0]
points = np.array(seg_data[1:]).reshape(-1, 2)
valid_points = points[(points >= 0) & (points <= 1)].reshape(-1, 2)
if valid_points.size > 1:
bbox = torch.tensor([cls, *valid_points.min(axis=0), *valid_points.max(axis=0)])
bboxes.append(bbox)
if bboxes:
return torch.stack(bboxes)
else:
logger.warning(f"No valid BBox in {label_path}")
return torch.zeros((0, 5))
def get_data(self, idx):
img_path, bboxes = self.img_paths[idx], self.bboxes[idx]
valid_mask = bboxes[:, 0] != -1
with Image.open(img_path) as img:
img = img.convert("RGB")
return img, torch.from_numpy(bboxes[valid_mask]), img_path
def get_more_data(self, num: int = 1):
indices = torch.randint(0, len(self), (num,))
return [self.get_data(idx)[:2] for idx in indices]
def _update_image_size(self, idx: int) -> None:
"""Update image size based on dynamic shape and batch settings."""
batch_start_idx = (idx // self.batch_size) * self.batch_size
image_ratio = self.ratios[batch_start_idx].clip(1 / 3, 3)
shift = ((self.base_size / 32 * (image_ratio - 1)) // (image_ratio + 1)) * 32
self.image_size = [int(self.base_size + shift), int(self.base_size - shift)]
self.transform.pad_resize.set_size(self.image_size)
def __getitem__(self, idx) -> Tuple[Image.Image, Tensor, Tensor, List[str]]:
img, bboxes, img_path = self.get_data(idx)
if self.dynamic_shape:
self._update_image_size(idx)
img, bboxes, rev_tensor = self.transform(img, bboxes)
bboxes[:, [1, 3]] *= self.image_size[0]
bboxes[:, [2, 4]] *= self.image_size[1]
return img, bboxes, rev_tensor, img_path
def __len__(self) -> int:
return len(self.bboxes)
def collate_fn(batch: List[Tuple[Tensor, Tensor]]) -> Tuple[Tensor, List[Tensor]]:
"""
A collate function to handle batching of images and their corresponding targets.
Args:
batch (list of tuples): Each tuple contains:
- image (Tensor): The image tensor.
- labels (Tensor): The tensor of labels for the image.
Returns:
Tuple[Tensor, List[Tensor]]: A tuple containing:
- A tensor of batched images.
- A list of tensors, each corresponding to bboxes for each image in the batch.
"""
batch_size = len(batch)
target_sizes = [item[1].size(0) for item in batch]
# TODO: Improve readability of these process
# TODO: remove maxBbox or reduce loss function memory usage
batch_targets = torch.zeros(batch_size, min(max(target_sizes), 100), 5)
batch_targets[:, :, 0] = -1
for idx, target_size in enumerate(target_sizes):
batch_targets[idx, : min(target_size, 100)] = batch[idx][1][:100]
batch_images, _, batch_reverse, batch_path = zip(*batch)
batch_images = torch.stack(batch_images)
batch_reverse = torch.stack(batch_reverse)
return batch_size, batch_images, batch_targets, batch_reverse, batch_path
def create_dataloader(data_cfg: DataConfig, dataset_cfg: DatasetConfig, task: str = "train"):
if task == "inference":
return StreamDataLoader(data_cfg)
if getattr(dataset_cfg, "auto_download", False):
prepare_dataset(dataset_cfg, task)
dataset = YoloDataset(data_cfg, dataset_cfg, task)
return DataLoader(
dataset,
batch_size=data_cfg.batch_size,
num_workers=data_cfg.cpu_num,
pin_memory=data_cfg.pin_memory,
collate_fn=collate_fn,
)
class StreamDataLoader:
def __init__(self, data_cfg: DataConfig):
self.source = data_cfg.source
self.running = True
self.is_stream = isinstance(self.source, int) or str(self.source).lower().startswith("rtmp://")
self.transform = AugmentationComposer([], data_cfg.image_size)
self.stop_event = Event()
if self.is_stream:
import cv2
self.cap = cv2.VideoCapture(self.source)
else:
self.source = Path(self.source)
self.queue = Queue()
self.thread = Thread(target=self.load_source)
self.thread.start()
def load_source(self):
if self.source.is_dir(): # image folder
self.load_image_folder(self.source)
elif any(self.source.suffix.lower().endswith(ext) for ext in [".mp4", ".avi", ".mkv"]): # Video file
self.load_video_file(self.source)
else: # Single image
self.process_image(self.source)
def load_image_folder(self, folder):
folder_path = Path(folder)
for file_path in folder_path.rglob("*"):
if self.stop_event.is_set():
break
if file_path.suffix.lower() in [".jpg", ".jpeg", ".png", ".bmp"]:
self.process_image(file_path)
def process_image(self, image_path):
image = Image.open(image_path).convert("RGB")
if image is None:
raise ValueError(f"Error loading image: {image_path}")
self.process_frame(image)
def load_video_file(self, video_path):
import cv2
cap = cv2.VideoCapture(str(video_path))
while self.running:
ret, frame = cap.read()
if not ret:
break
self.process_frame(frame)
cap.release()
def process_frame(self, frame):
if isinstance(frame, np.ndarray):
# TODO: we don't need cv2
import cv2
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
origin_frame = frame
frame, _, rev_tensor = self.transform(frame, torch.zeros(0, 5))
frame = frame[None]
rev_tensor = rev_tensor[None]
if not self.is_stream:
self.queue.put((frame, rev_tensor, origin_frame))
else:
self.current_frame = (frame, rev_tensor, origin_frame)
def __iter__(self) -> Generator[Tensor, None, None]:
return self
def __next__(self) -> Tensor:
if self.is_stream:
ret, frame = self.cap.read()
if not ret:
self.stop()
raise StopIteration
self.process_frame(frame)
return self.current_frame
else:
try:
frame = self.queue.get(timeout=1)
return frame
except Empty:
raise StopIteration
def stop(self):
self.running = False
if self.is_stream:
self.cap.release()
else:
self.thread.join(timeout=1)
def __len__(self):
return self.queue.qsize() if not self.is_stream else 0