File size: 12,869 Bytes
fa09d11 8ca39dc aba5422 8ca39dc 97e9dcb 1197f7d 6aabc6c 8ca39dc 1197f7d 97e9dcb 8fc6449 b5fa3f1 dcceddd ed7ee89 1197f7d 0174b5b 1197f7d 97e9dcb aba5422 3092710 aba5422 1197f7d 3092710 1197f7d aba5422 1197f7d fa09d11 1197f7d fa09d11 1197f7d b0c4448 1197f7d fa09d11 802cb12 3092710 fce8aa7 1690354 802cb12 1197f7d 3092710 1197f7d fa09d11 1197f7d 3092710 1197f7d fa09d11 dcceddd fa09d11 1197f7d dcceddd 1197f7d 6aabc6c 1197f7d fa09d11 1197f7d dcceddd 1197f7d fa09d11 1197f7d 1ff7fa6 1197f7d fa09d11 3092710 aba5422 1ff7fa6 aba5422 3d0f0de 1197f7d 6a39ae1 1197f7d 8e564ea 1197f7d 8e564ea 1197f7d 6a39ae1 1197f7d 5e0d5e2 1ff7fa6 1197f7d ed7ee89 e09ff86 ca2b494 e09ff86 1197f7d 8b1b21f 1197f7d aba5422 5e0d5e2 aba5422 6a39ae1 8b1b21f aba5422 8b1b21f 95520e9 8b1b21f 1197f7d 70a1547 1197f7d 95520e9 1197f7d 95520e9 1197f7d 95520e9 abc3992 95520e9 3fa2be7 95520e9 3fa2be7 95520e9 1197f7d 95520e9 97e9dcb 8ca39dc 564b976 5958998 95520e9 1197f7d 8ca39dc 97e9dcb 6a39ae1 8ca39dc fa09d11 8ca39dc 97e9dcb 8ca39dc 2ee7407 8ca39dc 6a39ae1 8ca39dc fa09d11 8ca39dc fa09d11 8ca39dc fa09d11 8ca39dc 2ee7407 100c13d 8ca39dc 2ee7407 8ca39dc 8b1b21f 15f0a98 7daf6f0 8b1b21f 8ca39dc 8b1b21f 8ca39dc 8b1b21f 8ca39dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
from pathlib import Path
from queue import Empty, Queue
from statistics import mean
from threading import Event, Thread
from typing import Generator, List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from rich.progress import track
from torch import Tensor
from torch.utils.data import DataLoader, Dataset
from yolo.config.config import DataConfig, DatasetConfig
from yolo.tools.data_augmentation import *
from yolo.tools.data_augmentation import AugmentationComposer
from yolo.tools.dataset_preparation import prepare_dataset
from yolo.utils.dataset_utils import (
create_image_metadata,
locate_label_paths,
scale_segmentation,
tensorlize,
)
from yolo.utils.logger import logger
class YoloDataset(Dataset):
def __init__(self, data_cfg: DataConfig, dataset_cfg: DatasetConfig, phase: str = "train2017"):
augment_cfg = data_cfg.data_augment
self.image_size = data_cfg.image_size
phase_name = dataset_cfg.get(phase, phase)
self.batch_size = data_cfg.batch_size
self.dynamic_shape = getattr(data_cfg, "dynamic_shape", False)
self.base_size = mean(self.image_size)
transforms = [eval(aug)(prob) for aug, prob in augment_cfg.items()]
self.transform = AugmentationComposer(transforms, self.image_size, self.base_size)
self.transform.get_more_data = self.get_more_data
self.img_paths, self.bboxes, self.ratios = tensorlize(self.load_data(Path(dataset_cfg.path), phase_name))
def load_data(self, dataset_path: Path, phase_name: str):
"""
Loads data from a cache or generates a new cache for a specific dataset phase.
Parameters:
dataset_path (Path): The root path to the dataset directory.
phase_name (str): The specific phase of the dataset (e.g., 'train', 'test') to load or generate data for.
Returns:
dict: The loaded data from the cache for the specified phase.
"""
cache_path = dataset_path / f"{phase_name}.cache"
if not cache_path.exists():
logger.info(f":factory: Generating {phase_name} cache")
data = self.filter_data(dataset_path, phase_name, self.dynamic_shape)
torch.save(data, cache_path)
else:
try:
data = torch.load(cache_path, weights_only=False)
except Exception as e:
logger.error(
f":rotating_light: Failed to load the cache at '{cache_path}'.\n"
":rotating_light: This may be caused by using cache from different other YOLO.\n"
":rotating_light: Please clean the cache and try running again."
)
raise e
logger.info(f":package: Loaded {phase_name} cache")
return data
def filter_data(self, dataset_path: Path, phase_name: str, sort_image: bool = False) -> list:
"""
Filters and collects dataset information by pairing images with their corresponding labels.
Parameters:
images_path (Path): Path to the directory containing image files.
labels_path (str): Path to the directory containing label files.
sort_image (bool): If True, sorts the dataset by the width-to-height ratio of images in descending order.
Returns:
list: A list of tuples, each containing the path to an image file and its associated segmentation as a tensor.
"""
images_path = dataset_path / "images" / phase_name
labels_path, data_type = locate_label_paths(dataset_path, phase_name)
images_list = sorted([p.name for p in Path(images_path).iterdir() if p.is_file()])
if data_type == "json":
annotations_index, image_info_dict = create_image_metadata(labels_path)
data = []
valid_inputs = 0
for image_name in track(images_list, description="Filtering data"):
if not image_name.lower().endswith((".jpg", ".jpeg", ".png")):
continue
image_id = Path(image_name).stem
if data_type == "json":
image_info = image_info_dict.get(image_id, None)
if image_info is None:
continue
annotations = annotations_index.get(image_info["id"], [])
image_seg_annotations = scale_segmentation(annotations, image_info)
elif data_type == "txt":
label_path = labels_path / f"{image_id}.txt"
if not label_path.is_file():
continue
with open(label_path, "r") as file:
image_seg_annotations = [list(map(float, line.strip().split())) for line in file]
else:
image_seg_annotations = []
labels = self.load_valid_labels(image_id, image_seg_annotations)
img_path = images_path / image_name
if sort_image:
with Image.open(img_path) as img:
width, height = img.size
else:
width, height = 0, 1
data.append((img_path, labels, width / height))
valid_inputs += 1
data = sorted(data, key=lambda x: x[2], reverse=True)
logger.info(f"Recorded {valid_inputs}/{len(images_list)} valid inputs")
return data
def load_valid_labels(self, label_path: str, seg_data_one_img: list) -> Union[Tensor, None]:
"""
Loads valid COCO style segmentation data (values between [0, 1]) and converts it to bounding box coordinates
by finding the minimum and maximum x and y values.
Parameters:
label_path (str): The filepath to the label file containing annotation data.
seg_data_one_img (list): The actual list of annotations (in segmentation format)
Returns:
Tensor or None: A tensor of all valid bounding boxes if any are found; otherwise, None.
"""
bboxes = []
for seg_data in seg_data_one_img:
cls = seg_data[0]
points = np.array(seg_data[1:]).reshape(-1, 2)
valid_points = points[(points >= 0) & (points <= 1)].reshape(-1, 2)
if valid_points.size > 1:
bbox = torch.tensor([cls, *valid_points.min(axis=0), *valid_points.max(axis=0)])
bboxes.append(bbox)
if bboxes:
return torch.stack(bboxes)
else:
logger.warning(f"No valid BBox in {label_path}")
return torch.zeros((0, 5))
def get_data(self, idx):
img_path, bboxes = self.img_paths[idx], self.bboxes[idx]
valid_mask = bboxes[:, 0] != -1
with Image.open(img_path) as img:
img = img.convert("RGB")
return img, torch.from_numpy(bboxes[valid_mask]), img_path
def get_more_data(self, num: int = 1):
indices = torch.randint(0, len(self), (num,))
return [self.get_data(idx)[:2] for idx in indices]
def _update_image_size(self, idx: int) -> None:
"""Update image size based on dynamic shape and batch settings."""
batch_start_idx = (idx // self.batch_size) * self.batch_size
image_ratio = self.ratios[batch_start_idx].clip(1 / 3, 3)
shift = ((self.base_size / 32 * (image_ratio - 1)) // (image_ratio + 1)) * 32
self.image_size = [int(self.base_size + shift), int(self.base_size - shift)]
self.transform.pad_resize.set_size(self.image_size)
def __getitem__(self, idx) -> Tuple[Image.Image, Tensor, Tensor, List[str]]:
img, bboxes, img_path = self.get_data(idx)
if self.dynamic_shape:
self._update_image_size(idx)
img, bboxes, rev_tensor = self.transform(img, bboxes)
bboxes[:, [1, 3]] *= self.image_size[0]
bboxes[:, [2, 4]] *= self.image_size[1]
return img, bboxes, rev_tensor, img_path
def __len__(self) -> int:
return len(self.bboxes)
def collate_fn(batch: List[Tuple[Tensor, Tensor]]) -> Tuple[Tensor, List[Tensor]]:
"""
A collate function to handle batching of images and their corresponding targets.
Args:
batch (list of tuples): Each tuple contains:
- image (Tensor): The image tensor.
- labels (Tensor): The tensor of labels for the image.
Returns:
Tuple[Tensor, List[Tensor]]: A tuple containing:
- A tensor of batched images.
- A list of tensors, each corresponding to bboxes for each image in the batch.
"""
batch_size = len(batch)
target_sizes = [item[1].size(0) for item in batch]
# TODO: Improve readability of these process
# TODO: remove maxBbox or reduce loss function memory usage
batch_targets = torch.zeros(batch_size, min(max(target_sizes), 100), 5)
batch_targets[:, :, 0] = -1
for idx, target_size in enumerate(target_sizes):
batch_targets[idx, : min(target_size, 100)] = batch[idx][1][:100]
batch_images, _, batch_reverse, batch_path = zip(*batch)
batch_images = torch.stack(batch_images)
batch_reverse = torch.stack(batch_reverse)
return batch_size, batch_images, batch_targets, batch_reverse, batch_path
def create_dataloader(data_cfg: DataConfig, dataset_cfg: DatasetConfig, task: str = "train"):
if task == "inference":
return StreamDataLoader(data_cfg)
if getattr(dataset_cfg, "auto_download", False):
prepare_dataset(dataset_cfg, task)
dataset = YoloDataset(data_cfg, dataset_cfg, task)
return DataLoader(
dataset,
batch_size=data_cfg.batch_size,
num_workers=data_cfg.cpu_num,
pin_memory=data_cfg.pin_memory,
collate_fn=collate_fn,
)
class StreamDataLoader:
def __init__(self, data_cfg: DataConfig):
self.source = data_cfg.source
self.running = True
self.is_stream = isinstance(self.source, int) or str(self.source).lower().startswith("rtmp://")
self.transform = AugmentationComposer([], data_cfg.image_size)
self.stop_event = Event()
if self.is_stream:
import cv2
self.cap = cv2.VideoCapture(self.source)
else:
self.source = Path(self.source)
self.queue = Queue()
self.thread = Thread(target=self.load_source)
self.thread.start()
def load_source(self):
if self.source.is_dir(): # image folder
self.load_image_folder(self.source)
elif any(self.source.suffix.lower().endswith(ext) for ext in [".mp4", ".avi", ".mkv"]): # Video file
self.load_video_file(self.source)
else: # Single image
self.process_image(self.source)
def load_image_folder(self, folder):
folder_path = Path(folder)
for file_path in folder_path.rglob("*"):
if self.stop_event.is_set():
break
if file_path.suffix.lower() in [".jpg", ".jpeg", ".png", ".bmp"]:
self.process_image(file_path)
def process_image(self, image_path):
image = Image.open(image_path).convert("RGB")
if image is None:
raise ValueError(f"Error loading image: {image_path}")
self.process_frame(image)
def load_video_file(self, video_path):
import cv2
cap = cv2.VideoCapture(str(video_path))
while self.running:
ret, frame = cap.read()
if not ret:
break
self.process_frame(frame)
cap.release()
def process_frame(self, frame):
if isinstance(frame, np.ndarray):
# TODO: we don't need cv2
import cv2
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
origin_frame = frame
frame, _, rev_tensor = self.transform(frame, torch.zeros(0, 5))
frame = frame[None]
rev_tensor = rev_tensor[None]
if not self.is_stream:
self.queue.put((frame, rev_tensor, origin_frame))
else:
self.current_frame = (frame, rev_tensor, origin_frame)
def __iter__(self) -> Generator[Tensor, None, None]:
return self
def __next__(self) -> Tensor:
if self.is_stream:
ret, frame = self.cap.read()
if not ret:
self.stop()
raise StopIteration
self.process_frame(frame)
return self.current_frame
else:
try:
frame = self.queue.get(timeout=1)
return frame
except Empty:
raise StopIteration
def stop(self):
self.running = False
if self.is_stream:
self.cap.release()
else:
self.thread.join(timeout=1)
def __len__(self):
return self.queue.qsize() if not self.is_stream else 0
|