|
Quick Start |
|
=========== |
|
|
|
.. note:: |
|
We expect all customizations to be done primarily by passing arguments or modifying the YAML config files. |
|
If more detailed modifications are needed, custom content should be modularized as much as possible to avoid extensive code modifications. |
|
|
|
.. _QuickInstallYOLO: |
|
|
|
Install YOLO |
|
------------ |
|
|
|
Clone the repository and install the dependencies: |
|
|
|
.. code-block:: bash |
|
|
|
git clone https://github.com/WongKinYiu/YOLO.git |
|
cd YOLO |
|
pip install -r requirements-dev.txt |
|
# Make sure to work inside the cloned folder. |
|
|
|
Alternatively, If you are planning to make a simple change: |
|
|
|
**Note**: In the following examples, you should replace ``python yolo/lazy.py`` with ``yolo`` . |
|
|
|
.. code-block:: bash |
|
|
|
pip install git+https://github.com/WongKinYiu/YOLO.git |
|
|
|
**Note**: Most tasks already include at yolo/lazy.py, so you can run with this prefix and follow arguments: ``python yolo/lazy.py`` |
|
|
|
|
|
Train Model |
|
----------- |
|
|
|
To train the model, use the following command: |
|
|
|
.. code-block:: bash |
|
|
|
python yolo/lazy.py task=train |
|
|
|
yolo task=train # if installed via pip |
|
|
|
- Overriding the ``dataset`` parameter, you can customize your dataset via a dataset config. |
|
- Overriding YOLO model by setting the ``model`` parameter to ``{v9-c, v9-m, ...}``. |
|
- More details can be found at :ref:`Train Tutorials<Train>`. |
|
|
|
For example: |
|
|
|
.. code-block:: bash |
|
|
|
python yolo/lazy.py task=train dataset=AYamlFilePath model=v9-m |
|
|
|
yolo task=train dataset=AYamlFilePath model=v9-m # if installed via pip |
|
|
|
Inference & Deployment |
|
------------------------ |
|
|
|
Inference is the default task of ``yolo/lazy.py``. To run inference and deploy the model, use: |
|
More details can be found at :ref:`Inference Tutorials <Inference>`. |
|
|
|
.. code-block:: bash |
|
|
|
python yolo/lazy.py task.data.source=AnySource |
|
|
|
yolo task.data.source=AnySource # if installed via pip |
|
|
|
You can enable fast inference modes by adding the parameter ``task.fast_inference={onnx, trt, deploy}``. |
|
|
|
- Theoretical acceleration following :ref:`YOLOv9 <Deploy>`. |
|
- Hardware acceleration like :ref:`ONNX <ONNX>` and :ref:`TensorRT <TensorRT>`. for optimized deployment. |
|
|