YOLO / yolo /tools /dataset_preparation.py
henry000's picture
πŸ› [Fix] display emoji bugs, change it to shortcode
802cb12
import zipfile
from pathlib import Path
from typing import Optional
import requests
from rich.progress import BarColumn, Progress, TextColumn, TimeRemainingColumn
from yolo.config.config import DatasetConfig
from yolo.utils.logger import logger
def download_file(url, destination: Path):
"""
Downloads a file from the specified URL to the destination path with progress logging.
"""
with requests.get(url, stream=True) as response:
response.raise_for_status()
total_size = int(response.headers.get("content-length", 0))
with Progress(
TextColumn("[progress.description]{task.description}"),
BarColumn(),
"[progress.percentage]{task.percentage:>3.1f}%",
"β€’",
"{task.completed}/{task.total} bytes",
"β€’",
TimeRemainingColumn(),
) as progress:
task = progress.add_task(f"πŸ“₯ Downloading {destination.name }...", total=total_size)
with open(destination, "wb") as file:
for data in response.iter_content(chunk_size=1024 * 1024): # 1 MB chunks
file.write(data)
progress.update(task, advance=len(data))
logger.info(":white_check_mark: Download completed.")
def unzip_file(source: Path, destination: Path):
"""
Extracts a ZIP file to the specified directory and removes the ZIP file after extraction.
"""
logger.info(f"Unzipping {source.name}...")
with zipfile.ZipFile(source, "r") as zip_ref:
zip_ref.extractall(destination)
source.unlink()
logger.info(f"Removed {source}.")
def check_files(directory, expected_count=None):
"""
Returns True if the number of files in the directory matches expected_count, False otherwise.
"""
files = [f.name for f in Path(directory).iterdir() if f.is_file()]
return len(files) == expected_count if expected_count is not None else bool(files)
def prepare_dataset(dataset_cfg: DatasetConfig, task: str):
"""
Prepares dataset by downloading and unzipping if necessary.
"""
# TODO: do EDA of dataset
data_dir = Path(dataset_cfg.path)
for data_type, settings in dataset_cfg.auto_download.items():
base_url = settings["base_url"]
for dataset_type, dataset_args in settings.items():
if dataset_type != "annotations" and dataset_cfg.get(task, task) != dataset_type:
continue
file_name = f"{dataset_args.get('file_name', dataset_type)}.zip"
url = f"{base_url}{file_name}"
local_zip_path = data_dir / file_name
extract_to = data_dir / data_type if data_type != "annotations" else data_dir
final_place = extract_to / dataset_type
final_place.mkdir(parents=True, exist_ok=True)
if check_files(final_place, dataset_args.get("file_num")):
logger.info(f":white_check_mark: Dataset {dataset_type: <12} already verified.")
continue
if not local_zip_path.exists():
download_file(url, local_zip_path)
unzip_file(local_zip_path, extract_to)
if not check_files(final_place, dataset_args.get("file_num")):
logger.error(f"Error verifying the {dataset_type} dataset after extraction.")
def prepare_weight(download_link: Optional[str] = None, weight_path: Path = Path("v9-c.pt")):
weight_name = weight_path.name
if download_link is None:
download_link = "https://github.com/WongKinYiu/yolov9mit/releases/download/v1.0-alpha/"
weight_link = f"{download_link}{weight_name}"
if not weight_path.parent.is_dir():
weight_path.parent.mkdir(parents=True, exist_ok=True)
if weight_path.exists():
logger.info(f"Weight file '{weight_path}' already exists.")
try:
download_file(weight_link, weight_path)
except requests.exceptions.RequestException as e:
logger.warning(f"Failed to download the weight file: {e}")