Spaces:
Runtime error
Runtime error
Geraldine J
commited on
Commit
·
b00b76d
1
Parent(s):
fc237d8
Update file
Browse files
app.py
CHANGED
@@ -42,7 +42,7 @@ import tempfile
|
|
42 |
import io
|
43 |
from PIL import Image
|
44 |
from pandas import json_normalize
|
45 |
-
#
|
46 |
torch.hub.download_url_to_file('https://i.pinimg.com/564x/18/0b/00/180b00e454362ff5caabe87d9a763a6f.jpg', 'ejemplo1.jpg')
|
47 |
torch.hub.download_url_to_file('https://i.pinimg.com/564x/3b/2f/d4/3b2fd4b6881b64429f208c5f32e5e4be.jpg', 'ejemplo2.jpg')
|
48 |
|
@@ -50,14 +50,14 @@ aws_access_key_id = os.environ['aws_access_key_id']
|
|
50 |
aws_secret_access_key = os.environ['aws_secret_access_key']
|
51 |
region = os.environ['region']
|
52 |
|
53 |
-
#
|
54 |
def removeStr(string):
|
55 |
return string.replace(" ", "")
|
56 |
|
|
|
57 |
def arrayListax(json_data):
|
58 |
dict = json_data
|
59 |
df2 = json_normalize(dict['detail'])
|
60 |
-
#df = pd.DataFrame(df2,columns=['Cantidad','Especie'])
|
61 |
return df2
|
62 |
|
63 |
#Imagen temporal guardada en upload_file
|
@@ -78,14 +78,14 @@ def upload_file(file_name, bucket=None, object_name=None):
|
|
78 |
:param object_name: S3 object name. If not specified then file_name is used
|
79 |
:return: Json if file was uploaded, else False
|
80 |
"""
|
81 |
-
#
|
82 |
if object_name is None:
|
83 |
object_name = os.path.basename(file_name+".jpg")
|
84 |
if bucket is None:
|
85 |
bucket = 'oceanapp'
|
86 |
s3_client = boto3.client('s3',aws_access_key_id=aws_access_key_id,aws_secret_access_key=aws_secret_access_key)
|
87 |
aws_region = boto3.session.Session().region_name
|
88 |
-
#
|
89 |
try:
|
90 |
with open(file_name, "rb") as f:
|
91 |
response = s3_client.upload_fileobj(f, bucket, object_name)
|
@@ -100,6 +100,7 @@ def upload_file(file_name, bucket=None, object_name=None):
|
|
100 |
return False
|
101 |
return stado
|
102 |
|
|
|
103 |
def qtyEspecies(datax, datay, resImg):
|
104 |
numLobos = 0
|
105 |
numPelicanos = 0
|
@@ -114,8 +115,7 @@ def qtyEspecies(datax, datay, resImg):
|
|
114 |
json_data = json.loads(data)
|
115 |
return json_data
|
116 |
|
117 |
-
|
118 |
-
# Model
|
119 |
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', force_reload=True, autoshape=True) # local model o google colab
|
120 |
|
121 |
def yolo(size, iou, conf, im):
|
@@ -130,18 +130,18 @@ def yolo(size, iou, conf, im):
|
|
130 |
model.conf = conf
|
131 |
# inference
|
132 |
results2 = model(im)
|
133 |
-
#
|
134 |
results2.render()
|
135 |
results3 = str(results2)
|
136 |
-
#
|
137 |
results5=results2.pandas().xyxy[0].sort_values('name')
|
138 |
-
#
|
139 |
pil_im = Image.fromarray(results2.ims[0])
|
140 |
b = io.BytesIO()
|
141 |
pil_im.save(b, 'jpeg')
|
142 |
im_bytes = b.getvalue()
|
143 |
fileImg = tempFileJSON(im_bytes)
|
144 |
-
#
|
145 |
results6 = qtyEspecies(results5,results3,fileImg)
|
146 |
lista2 = arrayListax(results6)
|
147 |
return Image.fromarray(results2.ims[0]), lista2, results6
|
|
|
42 |
import io
|
43 |
from PIL import Image
|
44 |
from pandas import json_normalize
|
45 |
+
# Imagenes por defecto para HF
|
46 |
torch.hub.download_url_to_file('https://i.pinimg.com/564x/18/0b/00/180b00e454362ff5caabe87d9a763a6f.jpg', 'ejemplo1.jpg')
|
47 |
torch.hub.download_url_to_file('https://i.pinimg.com/564x/3b/2f/d4/3b2fd4b6881b64429f208c5f32e5e4be.jpg', 'ejemplo2.jpg')
|
48 |
|
|
|
50 |
aws_secret_access_key = os.environ['aws_secret_access_key']
|
51 |
region = os.environ['region']
|
52 |
|
53 |
+
#Elimina espacios en blanco
|
54 |
def removeStr(string):
|
55 |
return string.replace(" ", "")
|
56 |
|
57 |
+
#Informacion del Dataframe a partir del json
|
58 |
def arrayListax(json_data):
|
59 |
dict = json_data
|
60 |
df2 = json_normalize(dict['detail'])
|
|
|
61 |
return df2
|
62 |
|
63 |
#Imagen temporal guardada en upload_file
|
|
|
78 |
:param object_name: S3 object name. If not specified then file_name is used
|
79 |
:return: Json if file was uploaded, else False
|
80 |
"""
|
81 |
+
# Si S3 object_name no esta especificado, usa file_name
|
82 |
if object_name is None:
|
83 |
object_name = os.path.basename(file_name+".jpg")
|
84 |
if bucket is None:
|
85 |
bucket = 'oceanapp'
|
86 |
s3_client = boto3.client('s3',aws_access_key_id=aws_access_key_id,aws_secret_access_key=aws_secret_access_key)
|
87 |
aws_region = boto3.session.Session().region_name
|
88 |
+
# Subida del archivo
|
89 |
try:
|
90 |
with open(file_name, "rb") as f:
|
91 |
response = s3_client.upload_fileobj(f, bucket, object_name)
|
|
|
100 |
return False
|
101 |
return stado
|
102 |
|
103 |
+
# Contador de los resultados del modelo
|
104 |
def qtyEspecies(datax, datay, resImg):
|
105 |
numLobos = 0
|
106 |
numPelicanos = 0
|
|
|
115 |
json_data = json.loads(data)
|
116 |
return json_data
|
117 |
|
118 |
+
# Modelo Yolov5x
|
|
|
119 |
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', force_reload=True, autoshape=True) # local model o google colab
|
120 |
|
121 |
def yolo(size, iou, conf, im):
|
|
|
130 |
model.conf = conf
|
131 |
# inference
|
132 |
results2 = model(im)
|
133 |
+
# actualiza el results.imgs con boxes y labels
|
134 |
results2.render()
|
135 |
results3 = str(results2)
|
136 |
+
# contador de especies
|
137 |
results5=results2.pandas().xyxy[0].sort_values('name')
|
138 |
+
# transforma la img en bytes
|
139 |
pil_im = Image.fromarray(results2.ims[0])
|
140 |
b = io.BytesIO()
|
141 |
pil_im.save(b, 'jpeg')
|
142 |
im_bytes = b.getvalue()
|
143 |
fileImg = tempFileJSON(im_bytes)
|
144 |
+
#Envia la informacion al contador de especies
|
145 |
results6 = qtyEspecies(results5,results3,fileImg)
|
146 |
lista2 = arrayListax(results6)
|
147 |
return Image.fromarray(results2.ims[0]), lista2, results6
|