Update app.py
Browse files
app.py
CHANGED
@@ -54,17 +54,18 @@ pipe_dict = {
|
|
54 |
"language": "english",
|
55 |
}
|
56 |
|
57 |
-
title = """
|
58 |
-
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
"""
|
69 |
|
70 |
max_speakers = 15
|
@@ -150,42 +151,62 @@ with gr.Blocks(css=css) as demo_blocks:
|
|
150 |
out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False)
|
151 |
outputs.append(out_audio)
|
152 |
|
153 |
-
gr.
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
### Spanish
|
159 |
-
|
160 |
-
* **Model**: [Spanish MMS TTS](https://huggingface.co/facebook/mms-tts-spa).
|
161 |
-
* **Datasets**:
|
162 |
-
- [Chilean Spanish TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-spanish).
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
* **Model**: [Tamil MMS TTS](https://huggingface.co/facebook/mms-tts-tam).
|
167 |
-
* **Datasets**:
|
168 |
-
- [Tamil TTS dataset](https://huggingface.co/datasets/ylacombe/google-tamil).
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
-
### Marathi
|
177 |
-
|
178 |
-
* **Model**: [Marathi MMS TTS](https://huggingface.co/facebook/mms-tts-mar).
|
179 |
-
* **Datasets**:
|
180 |
-
- [Marathi TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-marathi).
|
181 |
-
|
182 |
-
### English
|
183 |
-
|
184 |
-
* **Model**: [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs)
|
185 |
-
* **Dataset**: [British Isles Accent](https://huggingface.co/datasets/ylacombe/english_dialects). For each accent, we used 100 to 150 samples of a single speaker to finetune [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs).
|
186 |
-
|
187 |
-
|
188 |
-
""")
|
189 |
|
190 |
language.change(lambda language: gr.Dropdown(
|
191 |
models_per_language[language],
|
|
|
54 |
"language": "english",
|
55 |
}
|
56 |
|
57 |
+
title = """
|
58 |
+
# Explore MMS finetuning
|
59 |
+
## Or how to access truely multilingual TTS
|
60 |
|
61 |
+
Massively Multilingual Speech (MMS) models are light-weight, low-latency TTS models based on the [VITS architecture](https://huggingface.co/docs/transformers/model_doc/vits).
|
62 |
+
|
63 |
+
Meta's [MMS](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html),
|
64 |
+
and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts).
|
65 |
+
|
66 |
+
Coupled with the right data and the right training recipe, you can get an excellent finetuned version of every MMS checkpoints in **20 minutes** with as little as **80 to 150 samples**.
|
67 |
+
|
68 |
+
Stay tuned, the training recipe is coming soon!
|
69 |
"""
|
70 |
|
71 |
max_speakers = 15
|
|
|
151 |
out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False)
|
152 |
outputs.append(out_audio)
|
153 |
|
154 |
+
with gr.Accordion("Datasets and models details", open=False):
|
155 |
+
gr.Markdown("""
|
156 |
+
|
157 |
+
For each language, we used 100 to 150 samples of a single speaker to finetune the model.
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
### Spanish
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
* **Model**: [Spanish MMS TTS](https://huggingface.co/facebook/mms-tts-spa).
|
162 |
+
* **Datasets**:
|
163 |
+
- [Chilean Spanish TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-spanish).
|
164 |
+
|
165 |
+
### Tamil
|
166 |
+
|
167 |
+
* **Model**: [Tamil MMS TTS](https://huggingface.co/facebook/mms-tts-tam).
|
168 |
+
* **Datasets**:
|
169 |
+
- [Tamil TTS dataset](https://huggingface.co/datasets/ylacombe/google-tamil).
|
170 |
+
|
171 |
+
### Gujarati
|
172 |
+
|
173 |
+
* **Model**: [Gujarati MMS TTS](https://huggingface.co/facebook/mms-tts-guj).
|
174 |
+
* **Datasets**:
|
175 |
+
- [Gujarati TTS dataset](https://huggingface.co/datasets/ylacombe/google-gujarati).
|
176 |
+
|
177 |
+
### Marathi
|
178 |
+
|
179 |
+
* **Model**: [Marathi MMS TTS](https://huggingface.co/facebook/mms-tts-mar).
|
180 |
+
* **Datasets**:
|
181 |
+
- [Marathi TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-marathi).
|
182 |
+
|
183 |
+
### English
|
184 |
+
|
185 |
+
* **Model**: [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs)
|
186 |
+
* **Dataset**: [British Isles Accent](https://huggingface.co/datasets/ylacombe/english_dialects). For each accent, we used 100 to 150 samples of a single speaker to finetune [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs).
|
187 |
+
|
188 |
+
|
189 |
+
""")
|
190 |
+
|
191 |
+
with gr.Accordion("Run VITS and MMS with transformers", open=False):
|
192 |
+
gr.Markdown(
|
193 |
+
"""
|
194 |
+
```bash
|
195 |
+
pip install transformers
|
196 |
+
```
|
197 |
+
```py
|
198 |
+
from transformers import pipeline
|
199 |
+
import scipy
|
200 |
+
pipe = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs", device=0)
|
201 |
+
|
202 |
+
results = pipe("A cinematic shot of a baby racoon wearing an intricate italian priest robe")
|
203 |
+
|
204 |
+
# write to a wav file
|
205 |
+
scipy.io.wavfile.write("audio_vits.wav", rate=results["sampling_rate"], data=results["audio"].squeeze())
|
206 |
+
```
|
207 |
+
"""
|
208 |
+
)
|
209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
language.change(lambda language: gr.Dropdown(
|
212 |
models_per_language[language],
|