Spaces:
Sleeping
Sleeping
# from transformers import pipeline | |
from transformers import BartForSequenceClassification, BartTokenizer | |
import gradio as grad | |
# zero_shot_classifier = pipeline("zero-shot-classification") | |
bart_tkn = BartTokenizer.from_pretrained('facebook/bart-large-mnli') | |
mdl = BartForSequenceClassification.from_pretrained('facebook/bart-large-mnli') | |
# def classify(text, labels): | |
def classify(text, label): | |
# classifier_labels = labels.split(",") | |
# #["software", "politics", "love", "movies", "emergency", "advertisment", "sports"] | |
# response = zero_shot_classifier(text, classifier_labels) | |
tkn_ids = bart_tkn.encode(text, label, return_tensors = "pt") | |
tkn_lgts = mdl(tkn_ids)[0] | |
entail_contra_tkn_lgts = tkn_lgts[:, [0, 2]] | |
probab = entail_contra_tkn_lgts.softmax(dim = 1) | |
response = probab[:, 1].item() * 100 | |
return response | |
txt = grad.Textbox(lines = 1, label = "English", placeholder = "text to be classified") | |
labels = grad.Textbox(lines = 1, label = "Labels", placeholder = "comma separated labels") | |
out = grad.Textbox(lines = 1, label = "Classification") | |
grad.Interface( | |
classify, | |
inputs = [txt, labels], | |
outputs = out | |
).launch() |