Spaces:
Runtime error
Runtime error
File size: 4,209 Bytes
3c2822a 34e7b9c 3c2822a 1e2c47c fd5fb14 1e2c47c 93bbda2 3c2822a 4628125 2120548 3b8ed6a d409e00 4628125 b0a0f84 4628125 1e2c47c 0a4ba8c 4628125 0a4ba8c 3c2822a 4628125 1e2c47c 0a4ba8c 3c2822a 4628125 1e2c47c 0a4ba8c 3c2822a 4628125 1e2c47c 0a4ba8c 3c2822a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
#!/usr/bin/env python
from __future__ import annotations
import gradio as gr
from model_list import ModelList
DESCRIPTION = '# Explore Biology & Biochemistry Foundation Models 🧬'
NOTES = '''
Thanks to the following folks who have made suggestions to this list!
- [Shelby](https://twitter.com/shelbynewsad), author of [this nice model list](https://compoundvc.notion.site/compoundvc/474885e638e94e44a1aab4d3124e3d6a?v=299bce7af785413da4c9f36837c03aaf)
- [Valentyn Bezshapkin](https://twitter.com/valentynbez)
- [Payel Das](https://twitter.com/payel791)
- [Anthony Costa](https://twitter.com/anthonycosta)
'''
FOOTER = ''''''
def main():
model_list = ModelList()
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
search_box = gr.Textbox(
label='Search Model Name',
placeholder=
'You can search for titles with regular expressions. e.g. (?<!sur)face',
max_lines=1)
case_sensitive = gr.Checkbox(label='Case Sensitive')
filter_names = gr.CheckboxGroup(choices=[
'Paper',
'Code',
'Model Weights',
], label='Filter')
data_type_names = [
'DNA', 'scRNA', 'mRNA', 'scRNA perturbation', 'RNA structure prediction', 'RNA language model', 'protein language model', 'protein structure prediction',
'protein generation', 'protein function prediction', 'protein fitness prediction', 'antibody structure prediction', 'antibody language model', 'molecules',
'ligand generation', 'reaction-to-enzyme', 'enzyme generation', 'epigenomic', 'molecular docking', 'peptide property prediction',
]
data_types = gr.CheckboxGroup(choices=data_type_names,
value=data_type_names,
label='Type')
years = ['2020', '2021', '2022', '2023']
years_checkbox = gr.CheckboxGroup(choices=years, value=years, label='Year of Publication/Preprint')
# model_type_names = [
# 'GPT2', 'GPT-Neo', 'GPT-NeoX', 'ESM', 'BERT', 'RoBERTa', 'BART', 'T5', 'MPNN', 'diffusion', 'custom model'
# ]
# model_types = gr.CheckboxGroup(choices=model_type_names,
# value=model_type_names,
# label='Base Model')
search_button = gr.Button('Search')
number_of_models = gr.Textbox(label='Number of Models Found')
table = gr.HTML(show_label=False)
gr.Markdown(NOTES)
gr.Markdown(FOOTER)
demo.load(fn=model_list.render,
inputs=[
search_box,
case_sensitive,
filter_names,
data_types,
years_checkbox,
#model_types
],
outputs=[
number_of_models,
table,
])
search_box.submit(fn=model_list.render,
inputs=[
search_box,
case_sensitive,
filter_names,
data_types,
years_checkbox,
#model_types
],
outputs=[
number_of_models,
table,
])
search_button.click(fn=model_list.render,
inputs=[
search_box,
case_sensitive,
filter_names,
data_types,
years_checkbox,
#model_types
],
outputs=[
number_of_models,
table,
])
demo.launch(enable_queue=True, share=False)
if __name__ == '__main__':
main()
|