|
from dotenv import load_dotenv |
|
import os |
|
import gradio as gr |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain_text_splitters import CharacterTextSplitter |
|
from langchain_openai import OpenAIEmbeddings |
|
from langchain_community.vectorstores import Chroma |
|
from langchain_core.runnables import RunnablePassthrough |
|
from langchain_openai import ChatOpenAI |
|
from langchain import hub |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain.chains import create_history_aware_retriever |
|
from langchain.prompts import PromptTemplate |
|
from langchain.chains.question_answering import load_qa_chain |
|
import pydantic |
|
|
|
load_dotenv() |
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
|
|
|
|
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len) |
|
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY) |
|
llm = ChatOpenAI(model="gpt-4-1106-preview", api_key=OPENAI_API_KEY) |
|
|
|
vectordb_path = './vector_db' |
|
dbname = 'vector_db' |
|
uploaded_files = ['airbus.pdf', 'annualreport2223.pdf'] |
|
vectorstore = None |
|
|
|
def create_vectordb(): |
|
for file in uploaded_files: |
|
loader = PyPDFLoader(file) |
|
data = loader.load() |
|
texts = text_splitter.split_documents(data) |
|
|
|
if vectorstore is None: |
|
vectorstore = Chroma.from_documents(documents=texts, embedding=embeddings, persist_directory=os.path.join(vectordb_path, dbname)) |
|
else: |
|
vectorstore.add_documents(texts) |
|
|
|
|
|
def rag_bot(query, chat_history): |
|
print(f"Received query: {query}") |
|
|
|
template = """Please answer to human's input based on context. If the input is not mentioned in context, output something like 'I don't know'. |
|
Context: {context} |
|
Human: {human_input} |
|
Your Response as Chatbot:""" |
|
|
|
prompt_s = PromptTemplate( |
|
input_variables=["human_input", "context"], |
|
template=template |
|
) |
|
|
|
|
|
vectorstore = Chroma(persist_directory=os.path.join(vectordb_path), embedding_function=embeddings) |
|
|
|
|
|
|
|
docs = vectorstore.similarity_search(query) |
|
|
|
try: |
|
stuff_chain = load_qa_chain(llm, chain_type="stuff", prompt=prompt_s) |
|
except pydantic.ValidationError as e: |
|
print(f"Validation error: {e}") |
|
|
|
output = stuff_chain({"input_documents": docs, "human_input": query}, return_only_outputs=False) |
|
|
|
final_answer = output["output_text"] |
|
print(f"Final Answer ---> {final_answer}") |
|
|
|
return final_answer |
|
|
|
def chat(query, chat_history): |
|
response = rag_bot(query, chat_history) |
|
|
|
return response |
|
|
|
chatbot = gr.Chatbot(avatar_images=["user.jpg", "bot.png"], height=600) |
|
clear_but = gr.Button(value="Clear Chat") |
|
demo = gr.ChatInterface(fn=chat, title="RAG Chatbot Prototype", multimodal=False, retry_btn=None, undo_btn=None, clear_btn=clear_but, chatbot=chatbot) |
|
|
|
if __name__ == '__main__': |
|
demo.launch(debug=True, share=True) |