File size: 5,923 Bytes
bd0fa4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
import bitsandbytes as bnb
import transformers
import bs4
import pandas as pd
import re
import streamlit as st
import pandas as pd
import os

from dotenv import load_dotenv
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.output_parsers import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import YoutubeLoader
from langchain_community.document_loaders import WebBaseLoader, DataFrameLoader, CSVLoader
from langchain_community.vectorstores.utils import filter_complex_metadata
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.llms import HuggingFacePipeline
from langchain.prompts import PromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

from huggingface_hub import login
# Load environment variables from .env file
load_dotenv()

# Get the API token from environment variable
api_token = os.getenv("API_TOKEN")

os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:15000"

model_id = "google/gemma-2-9b-it"
quantization_config = BitsAndBytesConfig(load_in_4bit=True)

tokenizer = AutoTokenizer.from_pretrained(
    model_id, 
    return_tensors="pt",
    padding=True, 
    truncation=True,
    trust_remote_code=True,
)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    quantization_config=quantization_config,
    device_map="auto",
    low_cpu_mem_usage=True,
    pad_token_id=0,
)
model.config.use_cache = False

# Create a text generation pipeline with specific settings
pipe = transformers.pipeline(
    task="text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.float16,
    device_map="auto",
    temperature=0.0,
    top_p=0.9,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
    max_length=4096,
    truncation=True,
)

chat_model = HuggingFacePipeline(pipeline=pipe)

template = """

You are a genius trader with extensive knowledge of the financial and stock markets, capable of providing deep and insightful analysis of financial stocks with remarkable accuracy.



**ALWAYS**

Summarize and provide the main insights.

Be as detailed as possible, but don't make up any information that’s not from the context.

If you don't know an answer, say you don't know.

Let's think step by step.



Please ensure responses are informative, accurate, and tailored to the user's queries and preferences.

Use natural language to engage users and provide readable content throughout your response.



Chat history:

{chat_history}



User question:

{user_question}

"""

prompt_template = ChatPromptTemplate.from_template(template)

def find_youtube_links(text):
    # Define the regular expression pattern for YouTube URLs
    youtube_regex = (r'(https?://(?:www\.)?(?:youtube\.com/watch\?v=|youtu\.be/)[^ \n]+)')
    # Use re.findall() to find all matches in the text
    matches = re.findall(youtube_regex, text)
    return str(' '.join(matches))


# Initialize session state
if "chat_history" not in st.session_state:
    st.session_state.chat_history = [AIMessage(content="Hello, how can I help you?")]
    
    
# Display chat history
for message in st.session_state.chat_history:
    if isinstance(message, AIMessage):
        with st.chat_message("AI"):
            st.write(message.content)
    elif isinstance(message, HumanMessage):
        with st.chat_message("Human"):
            st.write(message.content)

            
# User input
user_query = st.chat_input("Type your message here...")
if user_query is not None and user_query != "":
    st.session_state.chat_history.append(HumanMessage(content=user_query))

    with st.chat_message("Human"):
        st.markdown(user_query)
    
    loader = YoutubeLoader.from_youtube_url(
        find_youtube_links(user_query),
        add_video_info=False,
        language=["en", "vi"],
        translation="en",
    )
    docs = loader.load()
    # Convert the loaded documents to a list of dictionaries
    data_list = [
        {
            "source": doc.metadata['source'],
            "page_content": doc.page_content
        }
        for doc in docs
    ]

    df = pd.DataFrame(data_list)
    loader = DataFrameLoader(df, page_content_column='page_content')
    content = loader.load()
    # reviews = filter_complex_metadata(reviews)

    # Split the document into chunks with a specified chunk size
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=150)
    all_splits = text_splitter.split_documents(content)
    
    # Initialize the embedding model
    embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L12-v2")
    
    # Store the document into a vector store with a specific embedding model
    vectorstore = FAISS.from_documents(all_splits, embedding_model)
    reviews_retriever  = vectorstore.as_retriever()
    
    # Function to get a response from the model
    def get_response(user_query, chat_history):
        chain = prompt_template | chat_model | StrOutputParser()
        response = chain.invoke({
            "user_question": user_query,
            "chat_history": chat_history,
        })
        return response
    
    response = get_response(reviews_retriever, st.session_state.chat_history)
    
    with st.chat_message("AI"):
        st.write(response)

    st.session_state.chat_history.append(AIMessage(content=response))