Spaces:
Runtime error
Runtime error
#gr.Interface.load("models/hipnologo/gpt2-imdb-finetune").launch() | |
import gradio as gr | |
from gradio import inputs, outputs | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
def predict_review(text): | |
# Specify the model name or path | |
model_name = "hipnologo/gpt2-imdb-finetune" # Replace with your model name on the Hugging Face model hub | |
# Load your model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
# encoding the input text | |
input_ids = tokenizer.encode(text, return_tensors="pt") | |
# getting the logits | |
output = model(input_ids) | |
logits = output.logits | |
# getting the predicted class | |
predicted_class = logits.argmax(-1).item() | |
sentiment = 'Positive' if predicted_class == 1 else 'Negative' | |
# Create a Markdown string for the output | |
result_md = f"Sentiment: {sentiment}" | |
return result_md | |
iface = gr.Interface( | |
fn=predict_review, | |
inputs=inputs.Textbox(lines=7, placeholder="Enter text here..."), | |
outputs=outputs.Text(), | |
title="Sentiment Analysis", | |
description="This application predicts the sentiment (Positive/Negative) of the input text using a fine-tuned GPT-2 model.", | |
theme="compact" # change this to the theme you prefer: 'huggingface', 'default' | |
) | |
iface.launch() | |