|
import gradio as gr |
|
import rdflib |
|
import requests |
|
import networkx as nx |
|
import plotly.graph_objs as go |
|
from pyvis.network import Network |
|
|
|
|
|
def load_names_from_url(jsonld_url): |
|
response = requests.get(jsonld_url) |
|
data = response.json() |
|
return [item['name'] for item in data if 'name' in item] |
|
|
|
|
|
jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld' |
|
names = load_names_from_url(jsonld_url) |
|
|
|
def build_graph_from_jsonld(jsonld_url, selected_name): |
|
response = requests.get(jsonld_url) |
|
data = response.json() |
|
|
|
selected_data = next((item for item in data if item['name'] == selected_name), None) |
|
|
|
if not selected_data: |
|
return "Local não encontrado." |
|
|
|
net = Network(height="600px", width="100%", bgcolor="#222222", font_color="white") |
|
|
|
|
|
place_id = selected_data['@id'] |
|
place_label = f"Name: {selected_data['name']}\nDescription: {selected_data['description'][:100]}..." |
|
net.add_node(place_id, label=selected_data['name'], title=place_label, color="#00ffff") |
|
|
|
|
|
geo_data = selected_data['geo'] |
|
geo_id = geo_data['@id'] |
|
geo_label = f"Lat: {geo_data['lat']}\nLong: {geo_data['long']}\nFeatureCode: {geo_data['gn:featureCode']}\nName: {geo_data['gn:name']}" |
|
net.add_node(geo_id, label="Geo", title=geo_label, color="#ff9999") |
|
net.add_edge(place_id, geo_id, title="schema:geo") |
|
|
|
|
|
for work in selected_data.get('subjectOf', []): |
|
work_id = work['@id'] |
|
work_label = f"Headline: {work['headline']}\nGenre: {work['genre']}\nDatePublished: {work['datePublished']}\nText: {work['text'][:100]}..." |
|
net.add_node(work_id, label=work['headline'], title=work_label, color="#99ff99") |
|
net.add_edge(place_id, work_id, title="schema:subjectOf") |
|
|
|
net.toggle_physics(True) |
|
net.show_buttons(filter_=['physics']) |
|
return net |
|
|
|
def run_query_and_visualize(selected_location): |
|
net = build_graph_from_jsonld(jsonld_url, selected_location) |
|
|
|
if isinstance(net, str): |
|
return net |
|
|
|
|
|
net.save_graph("temp_graph.html") |
|
with open("temp_graph.html", "r", encoding="utf-8") as f: |
|
graph_html = f.read() |
|
|
|
return graph_html |
|
|
|
css = """ |
|
body { |
|
background-color: #f0f0f0; |
|
font-family: Arial, sans-serif; |
|
} |
|
.container { |
|
max-width: 1200px; |
|
margin: 0 auto; |
|
padding: 20px; |
|
} |
|
h1 { |
|
color: #333; |
|
text-align: center; |
|
} |
|
.gr-form { |
|
background-color: white; |
|
padding: 20px; |
|
border-radius: 10px; |
|
box-shadow: 0 0 10px rgba(0,0,0,0.1); |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown("# Visualização de Grafos Literários") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
selected_location = gr.Dropdown(choices=names, label="Selecione o Local") |
|
run_button = gr.Button("Visualizar Grafo", variant="primary") |
|
|
|
with gr.Column(scale=3): |
|
graph_output = gr.HTML() |
|
|
|
def on_run_button_click(selected_location): |
|
return run_query_and_visualize(selected_location) |
|
|
|
run_button.click(fn=on_run_button_click, inputs=[selected_location], outputs=graph_output) |
|
|
|
demo.launch() |