ShowGraph / app.py
histlearn's picture
Update app.py
099b0ad verified
import gradio as gr
import rdflib
import requests
import matplotlib.pyplot as plt
import networkx as nx
from io import BytesIO
import base64
# Função para carregar e extrair os nomes do arquivo JSON-LD a partir de uma URL
def load_names_from_url(jsonld_url):
response = requests.get(jsonld_url)
data = response.json()
names = []
for item in data:
if 'name' in item:
names.append(item['name'])
return names
# Carregar nomes do arquivo JSON-LD
jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld'
names = load_names_from_url(jsonld_url)
def build_graph_from_jsonld(jsonld_url, selected_name):
response = requests.get(jsonld_url)
data = response.json()
# Filtrar o local selecionado
selected_data = next((item for item in data if item['name'] == selected_name), None)
if not selected_data:
return "Local não encontrado."
G = nx.DiGraph()
# Adicionar nó do Place
place_id = selected_data['@id']
place_label = f"schema:Place\nName: {selected_data['name']}\nDescription: {selected_data['description'][:30]}..."
G.add_node(place_id, label=place_label)
# Adicionar nó de GeoCoordinates
geo_data = selected_data['geo']
geo_id = geo_data['@id']
geo_label = f"geo:SpatialThing\nLat: {geo_data['lat']}\nLong: {geo_data['long']}\nFeatureCode: {geo_data['gn:featureCode']}\nFeatureCodeName: {geo_data['gn:featureCodeName']}\nName: {geo_data['gn:name']}"
G.add_node(geo_id, label=geo_label)
G.add_edge(place_id, geo_id, label="schema:geo")
# Adicionar nós de CreativeWork
for work in selected_data.get('subjectOf', []):
work_id = work['@id']
work_label = f"schema:CreativeWork\nHeadline: {work['headline']}\nGenre: {work['genre']}\nDatePublished: {work['datePublished']}\nText: {work['text'][:30]}...\nLanguage: {work['inLanguage']}"
G.add_node(work_id, label=work_label)
G.add_edge(place_id, work_id, label="schema:subjectOf")
return G
def run_query_and_visualize(selected_location, jsonld_url):
G = build_graph_from_jsonld(jsonld_url, selected_location)
if isinstance(G, str): # Caso de erro
return G
# Define posições específicas para os nós importantes
pos = nx.spring_layout(G)
# Desenha o gráfico usando NetworkX e Matplotlib
plt.figure(figsize=(15, 10))
nx.draw_networkx_nodes(G, pos, node_size=3000, node_color="skyblue", alpha=0.9)
nx.draw_networkx_edges(G, pos, width=2, alpha=0.5, edge_color='gray')
nx.draw_networkx_labels(G, pos, labels=nx.get_node_attributes(G, 'label'), font_size=9, font_color="black")
nx.draw_networkx_edge_labels(G, pos, edge_labels=nx.get_edge_attributes(G, 'label'), font_size=9, font_color="red")
plt.title("Resultado da Consulta", size=15)
plt.axis('off')
# Salva o gráfico em um arquivo
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode()
graph_html = f'<img src="data:image/png;base64,{img_str}"/>'
plt.close()
print("Gráfico gerado com sucesso.")
return graph_html
with gr.Blocks() as demo:
gr.Markdown("# Visualização de Query SPARQL")
with gr.Column():
selected_location = gr.Dropdown(choices=names, label="Selecione o Local")
run_button = gr.Button("Visualizar Grafo")
graph_output = gr.HTML()
def on_run_button_click(selected_location):
return run_query_and_visualize(selected_location, jsonld_url)
run_button.click(fn=on_run_button_click, inputs=[selected_location], outputs=graph_output)
demo.launch()