|
import gradio as gr |
|
import rdflib |
|
import requests |
|
import matplotlib.pyplot as plt |
|
import networkx as nx |
|
from io import BytesIO |
|
import base64 |
|
|
|
|
|
def load_names_from_url(jsonld_url): |
|
response = requests.get(jsonld_url) |
|
data = response.json() |
|
|
|
names = [] |
|
for item in data: |
|
if 'name' in item: |
|
names.append(item['name']) |
|
|
|
return names |
|
|
|
|
|
jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld' |
|
names = load_names_from_url(jsonld_url) |
|
|
|
def build_graph_from_jsonld(jsonld_url, selected_name): |
|
response = requests.get(jsonld_url) |
|
data = response.json() |
|
|
|
|
|
selected_data = next((item for item in data if item['name'] == selected_name), None) |
|
|
|
if not selected_data: |
|
return "Local não encontrado." |
|
|
|
G = nx.DiGraph() |
|
|
|
|
|
place_id = selected_data['@id'] |
|
place_label = f"schema:Place\nName: {selected_data['name']}\nDescription: {selected_data['description'][:30]}..." |
|
G.add_node(place_id, label=place_label) |
|
|
|
|
|
geo_data = selected_data['geo'] |
|
geo_id = geo_data['@id'] |
|
geo_label = f"geo:SpatialThing\nLat: {geo_data['lat']}\nLong: {geo_data['long']}\nFeatureCode: {geo_data['gn:featureCode']}\nFeatureCodeName: {geo_data['gn:featureCodeName']}\nName: {geo_data['gn:name']}" |
|
G.add_node(geo_id, label=geo_label) |
|
G.add_edge(place_id, geo_id, label="schema:geo") |
|
|
|
|
|
for work in selected_data.get('subjectOf', []): |
|
work_id = work['@id'] |
|
work_label = f"schema:CreativeWork\nHeadline: {work['headline']}\nGenre: {work['genre']}\nDatePublished: {work['datePublished']}\nText: {work['text'][:30]}...\nLanguage: {work['inLanguage']}" |
|
G.add_node(work_id, label=work_label) |
|
G.add_edge(place_id, work_id, label="schema:subjectOf") |
|
|
|
return G |
|
|
|
def run_query_and_visualize(selected_location, jsonld_url): |
|
G = build_graph_from_jsonld(jsonld_url, selected_location) |
|
|
|
if isinstance(G, str): |
|
return G |
|
|
|
|
|
pos = nx.spring_layout(G) |
|
|
|
|
|
plt.figure(figsize=(15, 10)) |
|
nx.draw_networkx_nodes(G, pos, node_size=3000, node_color="skyblue", alpha=0.9) |
|
nx.draw_networkx_edges(G, pos, width=2, alpha=0.5, edge_color='gray') |
|
nx.draw_networkx_labels(G, pos, labels=nx.get_node_attributes(G, 'label'), font_size=9, font_color="black") |
|
nx.draw_networkx_edge_labels(G, pos, edge_labels=nx.get_edge_attributes(G, 'label'), font_size=9, font_color="red") |
|
|
|
plt.title("Resultado da Consulta", size=15) |
|
plt.axis('off') |
|
|
|
|
|
buf = BytesIO() |
|
plt.savefig(buf, format='png') |
|
buf.seek(0) |
|
img_str = base64.b64encode(buf.read()).decode() |
|
graph_html = f'<img src="data:image/png;base64,{img_str}"/>' |
|
|
|
plt.close() |
|
|
|
print("Gráfico gerado com sucesso.") |
|
return graph_html |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Visualização de Query SPARQL") |
|
|
|
with gr.Column(): |
|
selected_location = gr.Dropdown(choices=names, label="Selecione o Local") |
|
run_button = gr.Button("Visualizar Grafo") |
|
|
|
graph_output = gr.HTML() |
|
|
|
def on_run_button_click(selected_location): |
|
return run_query_and_visualize(selected_location, jsonld_url) |
|
|
|
run_button.click(fn=on_run_button_click, inputs=[selected_location], outputs=graph_output) |
|
|
|
demo.launch() |