File size: 3,712 Bytes
695363c
 
f3dbd83
17e63c4
64c5ee5
17e63c4
 
695363c
4fdd879
2e7c89d
4fdd879
 
 
 
 
 
 
 
 
 
 
 
 
695363c
176d12a
4fdd879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17e63c4
 
4fdd879
dec020e
4fdd879
 
 
 
 
 
 
 
 
 
 
 
1011232
4fdd879
 
 
 
 
 
 
 
 
 
 
1011232
4fdd879
 
17e63c4
4fdd879
 
1011232
4fdd879
 
 
695363c
4fdd879
17e63c4
4fdd879
 
695363c
4fdd879
695363c
099b0ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import gradio as gr
import rdflib
import requests
import matplotlib.pyplot as plt
import networkx as nx
from io import BytesIO
import base64

# Função para carregar e extrair os nomes do arquivo JSON-LD a partir de uma URL
def load_names_from_url(jsonld_url):
    response = requests.get(jsonld_url)
    data = response.json()
    
    names = []
    for item in data:
        if 'name' in item:
            names.append(item['name'])
    
    return names

# Carregar nomes do arquivo JSON-LD
jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld'
names = load_names_from_url(jsonld_url)

def build_graph_from_jsonld(jsonld_url, selected_name):
    response = requests.get(jsonld_url)
    data = response.json()
    
    # Filtrar o local selecionado
    selected_data = next((item for item in data if item['name'] == selected_name), None)
    
    if not selected_data:
        return "Local não encontrado."
    
    G = nx.DiGraph()
    
    # Adicionar nó do Place
    place_id = selected_data['@id']
    place_label = f"schema:Place\nName: {selected_data['name']}\nDescription: {selected_data['description'][:30]}..."
    G.add_node(place_id, label=place_label)
    
    # Adicionar nó de GeoCoordinates
    geo_data = selected_data['geo']
    geo_id = geo_data['@id']
    geo_label = f"geo:SpatialThing\nLat: {geo_data['lat']}\nLong: {geo_data['long']}\nFeatureCode: {geo_data['gn:featureCode']}\nFeatureCodeName: {geo_data['gn:featureCodeName']}\nName: {geo_data['gn:name']}"
    G.add_node(geo_id, label=geo_label)
    G.add_edge(place_id, geo_id, label="schema:geo")
    
    # Adicionar nós de CreativeWork
    for work in selected_data.get('subjectOf', []):
        work_id = work['@id']
        work_label = f"schema:CreativeWork\nHeadline: {work['headline']}\nGenre: {work['genre']}\nDatePublished: {work['datePublished']}\nText: {work['text'][:30]}...\nLanguage: {work['inLanguage']}"
        G.add_node(work_id, label=work_label)
        G.add_edge(place_id, work_id, label="schema:subjectOf")
    
    return G

def run_query_and_visualize(selected_location, jsonld_url):
    G = build_graph_from_jsonld(jsonld_url, selected_location)

    if isinstance(G, str):  # Caso de erro
        return G
    
    # Define posições específicas para os nós importantes
    pos = nx.spring_layout(G)
    
    # Desenha o gráfico usando NetworkX e Matplotlib
    plt.figure(figsize=(15, 10))
    nx.draw_networkx_nodes(G, pos, node_size=3000, node_color="skyblue", alpha=0.9)
    nx.draw_networkx_edges(G, pos, width=2, alpha=0.5, edge_color='gray')
    nx.draw_networkx_labels(G, pos, labels=nx.get_node_attributes(G, 'label'), font_size=9, font_color="black")
    nx.draw_networkx_edge_labels(G, pos, edge_labels=nx.get_edge_attributes(G, 'label'), font_size=9, font_color="red")

    plt.title("Resultado da Consulta", size=15)
    plt.axis('off')
    
    # Salva o gráfico em um arquivo
    buf = BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    img_str = base64.b64encode(buf.read()).decode()
    graph_html = f'<img src="data:image/png;base64,{img_str}"/>'
    
    plt.close()

    print("Gráfico gerado com sucesso.")
    return graph_html

with gr.Blocks() as demo:
    gr.Markdown("# Visualização de Query SPARQL")

    with gr.Column():
        selected_location = gr.Dropdown(choices=names, label="Selecione o Local")
        run_button = gr.Button("Visualizar Grafo")

    graph_output = gr.HTML()

    def on_run_button_click(selected_location):
        return run_query_and_visualize(selected_location, jsonld_url)

    run_button.click(fn=on_run_button_click, inputs=[selected_location], outputs=graph_output)

demo.launch()