Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,24 @@
|
|
1 |
import gradio as gr
|
2 |
import rdflib
|
3 |
import requests
|
|
|
4 |
import networkx as nx
|
5 |
-
|
6 |
-
|
7 |
|
8 |
-
#
|
9 |
def load_names_from_url(jsonld_url):
|
10 |
response = requests.get(jsonld_url)
|
11 |
data = response.json()
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
#
|
15 |
jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld'
|
16 |
names = load_names_from_url(jsonld_url)
|
17 |
|
@@ -19,84 +26,77 @@ def build_graph_from_jsonld(jsonld_url, selected_name):
|
|
19 |
response = requests.get(jsonld_url)
|
20 |
data = response.json()
|
21 |
|
|
|
22 |
selected_data = next((item for item in data if item['name'] == selected_name), None)
|
23 |
|
24 |
if not selected_data:
|
25 |
return "Local não encontrado."
|
26 |
|
27 |
-
|
28 |
|
29 |
-
#
|
30 |
place_id = selected_data['@id']
|
31 |
-
place_label = f"
|
32 |
-
|
33 |
|
34 |
-
#
|
35 |
geo_data = selected_data['geo']
|
36 |
geo_id = geo_data['@id']
|
37 |
-
geo_label = f"
|
38 |
-
|
39 |
-
|
40 |
|
41 |
-
#
|
42 |
for work in selected_data.get('subjectOf', []):
|
43 |
work_id = work['@id']
|
44 |
-
work_label = f"
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
#
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
62 |
|
|
|
|
|
|
|
63 |
return graph_html
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
.
|
71 |
-
|
72 |
-
|
73 |
-
padding: 20px;
|
74 |
-
}
|
75 |
-
h1 {
|
76 |
-
color: #333;
|
77 |
-
text-align: center;
|
78 |
-
}
|
79 |
-
.gr-form {
|
80 |
-
background-color: white;
|
81 |
-
padding: 20px;
|
82 |
-
border-radius: 10px;
|
83 |
-
box-shadow: 0 0 10px rgba(0,0,0,0.1);
|
84 |
-
}
|
85 |
-
"""
|
86 |
|
87 |
-
with gr.Blocks(css=css) as demo:
|
88 |
-
gr.Markdown("# Visualização de Grafos Literários")
|
89 |
-
|
90 |
-
with gr.Row():
|
91 |
-
with gr.Column(scale=1):
|
92 |
-
selected_location = gr.Dropdown(choices=names, label="Selecione o Local")
|
93 |
-
run_button = gr.Button("Visualizar Grafo", variant="primary")
|
94 |
-
|
95 |
-
with gr.Column(scale=3):
|
96 |
-
graph_output = gr.HTML()
|
97 |
-
|
98 |
def on_run_button_click(selected_location):
|
99 |
-
return run_query_and_visualize(selected_location)
|
100 |
|
101 |
run_button.click(fn=on_run_button_click, inputs=[selected_location], outputs=graph_output)
|
102 |
|
|
|
1 |
import gradio as gr
|
2 |
import rdflib
|
3 |
import requests
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
import networkx as nx
|
6 |
+
from io import BytesIO
|
7 |
+
import base64
|
8 |
|
9 |
+
# Função para carregar e extrair os nomes do arquivo JSON-LD a partir de uma URL
|
10 |
def load_names_from_url(jsonld_url):
|
11 |
response = requests.get(jsonld_url)
|
12 |
data = response.json()
|
13 |
+
|
14 |
+
names = []
|
15 |
+
for item in data:
|
16 |
+
if 'name' in item:
|
17 |
+
names.append(item['name'])
|
18 |
+
|
19 |
+
return names
|
20 |
|
21 |
+
# Carregar nomes do arquivo JSON-LD
|
22 |
jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld'
|
23 |
names = load_names_from_url(jsonld_url)
|
24 |
|
|
|
26 |
response = requests.get(jsonld_url)
|
27 |
data = response.json()
|
28 |
|
29 |
+
# Filtrar o local selecionado
|
30 |
selected_data = next((item for item in data if item['name'] == selected_name), None)
|
31 |
|
32 |
if not selected_data:
|
33 |
return "Local não encontrado."
|
34 |
|
35 |
+
G = nx.DiGraph()
|
36 |
|
37 |
+
# Adicionar nó do Place
|
38 |
place_id = selected_data['@id']
|
39 |
+
place_label = f"schema:Place\nName: {selected_data['name']}\nDescription: {selected_data['description'][:30]}..."
|
40 |
+
G.add_node(place_id, label=place_label)
|
41 |
|
42 |
+
# Adicionar nó de GeoCoordinates
|
43 |
geo_data = selected_data['geo']
|
44 |
geo_id = geo_data['@id']
|
45 |
+
geo_label = f"geo:SpatialThing\nLat: {geo_data['lat']}\nLong: {geo_data['long']}\nFeatureCode: {geo_data['gn:featureCode']}\nFeatureCodeName: {geo_data['gn:featureCodeName']}\nName: {geo_data['gn:name']}"
|
46 |
+
G.add_node(geo_id, label=geo_label)
|
47 |
+
G.add_edge(place_id, geo_id, label="schema:geo")
|
48 |
|
49 |
+
# Adicionar nós de CreativeWork
|
50 |
for work in selected_data.get('subjectOf', []):
|
51 |
work_id = work['@id']
|
52 |
+
work_label = f"schema:CreativeWork\nHeadline: {work['headline']}\nGenre: {work['genre']}\nDatePublished: {work['datePublished']}\nText: {work['text'][:30]}...\nLanguage: {work['inLanguage']}"
|
53 |
+
G.add_node(work_id, label=work_label)
|
54 |
+
G.add_edge(place_id, work_id, label="schema:subjectOf")
|
55 |
|
56 |
+
return G
|
57 |
+
|
58 |
+
def run_query_and_visualize(selected_location, jsonld_url):
|
59 |
+
G = build_graph_from_jsonld(jsonld_url, selected_location)
|
60 |
|
61 |
+
if isinstance(G, str): # Caso de erro
|
62 |
+
return G
|
63 |
|
64 |
+
# Define posições específicas para os nós importantes
|
65 |
+
pos = nx.spring_layout(G)
|
66 |
+
|
67 |
+
# Desenha o gráfico usando NetworkX e Matplotlib
|
68 |
+
plt.figure(figsize=(15, 10))
|
69 |
+
nx.draw_networkx_nodes(G, pos, node_size=3000, node_color="skyblue", alpha=0.9)
|
70 |
+
nx.draw_networkx_edges(G, pos, width=2, alpha=0.5, edge_color='gray')
|
71 |
+
nx.draw_networkx_labels(G, pos, labels=nx.get_node_attributes(G, 'label'), font_size=9, font_color="black")
|
72 |
+
nx.draw_networkx_edge_labels(G, pos, edge_labels=nx.get_edge_attributes(G, 'label'), font_size=9, font_color="red")
|
73 |
+
|
74 |
+
plt.title("Resultado da Consulta", size=15)
|
75 |
+
plt.axis('off')
|
76 |
|
77 |
+
# Salva o gráfico em um arquivo
|
78 |
+
buf = BytesIO()
|
79 |
+
plt.savefig(buf, format='png')
|
80 |
+
buf.seek(0)
|
81 |
+
img_str = base64.b64encode(buf.read()).decode()
|
82 |
+
graph_html = f'<img src="data:image/png;base64,{img_str}"/>'
|
83 |
|
84 |
+
plt.close()
|
85 |
+
|
86 |
+
print("Gráfico gerado com sucesso.")
|
87 |
return graph_html
|
88 |
|
89 |
+
with gr.Blocks() as demo:
|
90 |
+
gr.Markdown("# Visualização de Query SPARQL")
|
91 |
+
|
92 |
+
with gr.Column():
|
93 |
+
selected_location = gr.Dropdown(choices=names, label="Selecione o Local")
|
94 |
+
run_button = gr.Button("Visualizar Grafo")
|
95 |
+
|
96 |
+
graph_output = gr.HTML()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
def on_run_button_click(selected_location):
|
99 |
+
return run_query_and_visualize(selected_location, jsonld_url)
|
100 |
|
101 |
run_button.click(fn=on_run_button_click, inputs=[selected_location], outputs=graph_output)
|
102 |
|