Spaces:
Running
Running
File size: 9,860 Bytes
5263bd3 f1d4be6 5263bd3 4a7c026 40fe6da a6886ca 5263bd3 b5edb58 f1d4be6 7e92f7c 870813f f1d4be6 870813f a6886ca 7e92f7c a6886ca ef80028 a6886ca 7e92f7c a6886ca f1d4be6 7e92f7c ef80028 7e92f7c ef80028 7e92f7c ef80028 7e92f7c ef80028 7e92f7c ef80028 a6886ca 7e92f7c f1d4be6 ef80028 7e19501 7e92f7c f1d4be6 ef80028 7e92f7c ef80028 7e92f7c f1d4be6 7e92f7c 8c49ca8 7e92f7c a6886ca 7e92f7c a6886ca 7e92f7c 3b775b7 7e92f7c a6886ca 7e92f7c ef80028 7e92f7c 555d484 7e92f7c 555d484 7e92f7c ef80028 7e92f7c b5edb58 7e92f7c 555d484 f1d4be6 ef80028 7e92f7c ef80028 f1d4be6 ef80028 f1d4be6 0681a74 f1d4be6 7e92f7c ef80028 7e92f7c f1d4be6 ef80028 7e92f7c ef80028 f1d4be6 7e92f7c ef80028 723da6d ef80028 555d484 a6886ca b5edb58 ef80028 f1d4be6 ef80028 f1d4be6 7e92f7c ef80028 7e92f7c ef80028 7e92f7c ef80028 a6886ca 7e92f7c ef80028 f1d4be6 ef80028 f1d4be6 ef80028 f1d4be6 ef80028 7e92f7c ef80028 f1d4be6 ef80028 7e92f7c ef80028 8f84058 7e92f7c ef80028 7e92f7c ef80028 7e92f7c ef80028 7e92f7c ef80028 7e92f7c ef80028 0d2d632 723da6d ef80028 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
def parse_fasta(text):
"""Parse FASTA formatted text into a list of (header, sequence)."""
sequences = []
current_header = None
current_sequence = []
for line in text.strip().split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""Convert a sequence to a k-mer frequency vector."""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers
return vec
def calculate_shap_values(model, x_tensor):
"""
Calculate SHAP values using a simple ablation approach.
Returns shap values and model prediction.
"""
model.eval()
with torch.no_grad():
# Get baseline prediction
baseline_output = model(x_tensor)
baseline_probs = torch.softmax(baseline_output, dim=1)
baseline_prob = baseline_probs[0, 1].item() # Probability of human class
# Calculate impact of zeroing each feature
shap_values = []
x_zeroed = x_tensor.clone()
for i in range(x_tensor.shape[1]):
x_zeroed[0, i] = 0
output = model(x_zeroed)
probs = torch.softmax(output, dim=1)
prob = probs[0, 1].item()
impact = baseline_prob - prob # How much removing the feature changed the prediction
shap_values.append(impact)
x_zeroed[0, i] = x_tensor[0, i] # Restore the original value
return np.array(shap_values), baseline_prob
def create_importance_bar_plot(shap_values, kmers, top_k=10):
"""Create a bar plot of the most important k-mers."""
plt.rcParams.update({'font.size': 10})
plt.figure(figsize=(10, 6))
# Sort by absolute importance
indices = np.argsort(np.abs(shap_values))[-top_k:]
values = shap_values[indices]
features = [kmers[i] for i in indices]
colors = ['#ff9999' if v > 0 else '#99ccff' for v in values]
plt.barh(range(len(values)), values, color=colors)
plt.yticks(range(len(values)), features)
plt.xlabel('SHAP value (impact on model output)')
plt.title(f'Top {top_k} Most Influential k-mers')
plt.gca().invert_yaxis() # Most important at top
return plt.gcf()
def visualize_sequence_impacts(sequence, kmers, shap_values, base_prob):
"""
Create a SHAP-style visualization of sequence impacts.
Shows each k-mer's contribution in context.
"""
k = 4 # k-mer size
kmer_dict = {km: i for i, km in enumerate(kmers)}
# Find all k-mers and their impacts
kmer_impacts = []
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
impact = shap_values[kmer_dict[kmer]]
kmer_impacts.append((i, kmer, impact))
# Sort by absolute impact
kmer_impacts.sort(key=lambda x: abs(x[2]), reverse=True)
# Create the plot
fig = plt.figure(figsize=(20, max(10, len(kmer_impacts[:30])*0.3)))
ax = plt.gca()
# Add title and base value
plt.text(0.01, 1.02, f"base value = {base_prob:.3f}", transform=ax.transAxes, fontsize=12)
# Plot k-mers
y_position = 1
sequence_length = len(sequence)
for pos, kmer, impact in kmer_impacts[:30]: # Show top 30 most impactful k-mers
# Show sequence with highlighted k-mer
pre_sequence = sequence[:pos]
post_sequence = sequence[pos+k:]
# Choose color based on impact
color = '#ffcccb' if impact > 0 else '#cce0ff' # Light red or light blue
arrow = 'β' if impact > 0 else 'β'
# Calculate text positions
plt.text(0.01, y_position, pre_sequence, fontsize=10)
plt.text(0.01 + len(pre_sequence)/(sequence_length*1.5), y_position,
kmer, fontsize=10, bbox=dict(facecolor=color, alpha=0.3, pad=2))
plt.text(0.01 + (len(pre_sequence) + len(kmer))/(sequence_length*1.5),
y_position, post_sequence, fontsize=10)
# Add impact value
plt.text(0.8, y_position, f"{arrow} {impact:+.3f}", fontsize=10)
y_position -= 0.03
plt.axis('off')
plt.tight_layout()
return fig
def predict(file_obj, top_kmers=10, fasta_text=""):
"""Main prediction function for Gradio interface."""
# Handle input
if fasta_text.strip():
text = fasta_text.strip()
elif file_obj is not None:
try:
with open(file_obj, 'r') as f:
text = f.read()
except Exception as e:
return f"Error reading file: {str(e)}", None, None
else:
return "Please provide a FASTA sequence.", None, None
# Parse FASTA
sequences = parse_fasta(text)
if not sequences:
return "No valid FASTA sequences found.", None, None
header, seq = sequences[0]
# Load model and process sequence
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
try:
model = VirusClassifier(256).to(device)
model.load_state_dict(torch.load('model.pt', map_location=device, weights_only=True))
scaler = joblib.load('scaler.pkl')
except Exception as e:
return f"Error loading model: {str(e)}", None, None
# Generate features
freq_vector = sequence_to_kmer_vector(seq)
scaled_vector = scaler.transform(freq_vector.reshape(1, -1))
x_tensor = torch.FloatTensor(scaled_vector).to(device)
# Calculate SHAP values and get prediction
shap_values, prob_human = calculate_shap_values(model, x_tensor)
# Generate result text
results = [
f"Sequence: {header}",
f"Prediction: {'Human' if prob_human > 0.5 else 'Non-human'} Origin",
f"Confidence: {max(prob_human, 1-prob_human):.3f}",
f"Human Probability: {prob_human:.3f}",
"\nTop Contributing k-mers:"
]
# Get k-mers for visualization
kmers = [''.join(p) for p in product("ACGT", repeat=4)]
# Create visualizations
importance_plot = create_importance_bar_plot(shap_values, kmers, top_kmers)
sequence_plot = visualize_sequence_impacts(seq, kmers, shap_values, prob_human)
# Convert plots to images
def fig_to_image(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
buf.seek(0)
img = Image.open(buf)
plt.close(fig)
return img
return "\n".join(results), fig_to_image(importance_plot), fig_to_image(sequence_plot)
# Create Gradio interface
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
"""
with gr.Blocks(css=css) as iface:
gr.Markdown("""
# Virus Host Classifier
Predicts whether a viral sequence is of human or non-human origin using k-mer analysis.
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload FASTA file",
file_types=[".fasta", ".fa", ".txt"],
type="filepath"
)
text_input = gr.Textbox(
label="Or paste FASTA sequence",
placeholder=">sequence_name\nACGTACGT...",
lines=5
)
top_k = gr.Slider(
minimum=5,
maximum=30,
value=10,
step=1,
label="Number of top k-mers to display"
)
submit_btn = gr.Button("Analyze Sequence", variant="primary")
with gr.Column(scale=2):
results = gr.Textbox(label="Analysis Results", lines=10)
kmer_plot = gr.Image(label="K-mer Importance Plot")
shap_plot = gr.Image(label="Sequence Impact Visualization (SHAP-style)")
submit_btn.click(
predict,
inputs=[file_input, top_k, text_input],
outputs=[results, kmer_plot, shap_plot]
)
gr.Markdown("""
### Visualization Guide
- **K-mer Importance Plot**: Shows the most influential k-mers and their SHAP values
- **Sequence Impact Visualization**: Shows the sequence with highlighted k-mers:
- Red highlights = pushing toward human origin
- Blue highlights = pushing toward non-human origin
- Arrows (β/β) show impact direction
- Values show impact magnitude
""")
if __name__ == "__main__":
iface.launch() |