Spaces:
Running
Running
File size: 17,009 Bytes
5263bd3 4a7c026 40fe6da a6886ca afbf1c6 5263bd3 3b775b7 a6886ca 3b775b7 a6886ca 3b775b7 a6886ca b5edb58 a6886ca b5edb58 a6886ca 870813f a6886ca 6c88c65 a6886ca 7e19501 a6886ca b5edb58 a6886ca b5edb58 a6886ca b5edb58 a6886ca b5edb58 a6886ca b5edb58 a6886ca b5edb58 6c88c65 b5edb58 3b775b7 a6886ca 3b775b7 a6886ca b5edb58 a6886ca 3b775b7 8c49ca8 a6886ca 3b775b7 a6886ca 3b775b7 7e19501 a6886ca 3b775b7 a6886ca b5edb58 a6886ca 723da6d b5edb58 a6886ca b5edb58 9d48283 3b775b7 a6886ca b5edb58 a6886ca 0d2d632 a6886ca b5edb58 a6886ca b5edb58 a6886ca b5edb58 a6886ca 3b775b7 b5edb58 a6886ca b5edb58 a6886ca b5edb58 a6886ca b5edb58 a6886ca 3b775b7 a6886ca b5edb58 3b775b7 a6886ca b5edb58 a6886ca b5edb58 a6886ca b5edb58 a6886ca b5edb58 a6886ca d192dd4 a6886ca 3b775b7 a6886ca 0d2d632 723da6d a6886ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
import gradio as gr
import torch
import joblib
import numpy as np
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image
from itertools import product
# --------------- Model Definition ---------------
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
def get_gradient_importance(self, x, class_index=1):
"""
Calculate gradient-based importance for each input feature.
By default, we compute the gradient wrt the 'human' class (index=1).
This method is akin to a raw gradient or 'saliency' approach.
"""
x = x.clone().detach().requires_grad_(True)
output = self.network(x)
probs = torch.softmax(output, dim=1)
# Probability of the specified class
target_prob = probs[..., class_index]
# Zero existing gradients if any
if x.grad is not None:
x.grad.zero_()
# Backprop on that probability
target_prob.backward()
# Raw gradient is now in x.grad
importance = x.grad.detach()
# Optional: Multiply by input to get a more "integrated gradients"-like measure
# importance = importance * x.detach()
return importance, float(target_prob)
# --------------- Utility Functions ---------------
def parse_fasta(text: str):
"""
Parse a FASTA string and return a list of (header, sequence) pairs.
"""
sequences = []
current_header = None
current_sequence = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""
Convert a nucleotide sequence into a k-mer frequency vector.
Defaults to k=4.
"""
# Generate all possible k-mers
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers
return vec
def compute_sequence_stats(sequence: str):
"""
Compute various statistics for a given sequence:
- Length
- GC content (%)
- A/C/G/T counts
"""
length = len(sequence)
if length == 0:
return {
'length': 0,
'gc_content': 0,
'counts': {'A': 0, 'C': 0, 'G': 0, 'T': 0}
}
counts = {
'A': sequence.count('A'),
'C': sequence.count('C'),
'G': sequence.count('G'),
'T': sequence.count('T')
}
gc_content = (counts['G'] + counts['C']) / length * 100.0
return {
'length': length,
'gc_content': gc_content,
'counts': counts
}
# --------------- Visualization Functions ---------------
def plot_shap_like_bars(kmers, importance_values, top_k=10):
"""
Create a bar chart that mimics a SHAP summary plot:
- k-mers on y-axis
- importance magnitude on x-axis
- color indicating positive (push towards human) vs negative (push towards non-human)
"""
abs_importance = np.abs(importance_values)
# Sort by absolute importance
sorted_indices = np.argsort(abs_importance)[::-1]
top_indices = sorted_indices[:top_k]
# Prepare data
top_kmers = [kmers[i] for i in top_indices]
top_importances = importance_values[top_indices]
# Create plot
fig, ax = plt.subplots(figsize=(8, 6))
colors = ['green' if val > 0 else 'red' for val in top_importances]
ax.barh(range(len(top_kmers)), np.abs(top_importances), color=colors)
ax.set_yticks(range(len(top_kmers)))
ax.set_yticklabels(top_kmers)
ax.invert_yaxis() # So that the highest value is at the top
ax.set_xlabel("Feature Importance (Gradient Magnitude)")
ax.set_title(f"Top-{top_k} SHAP-like Feature Importances")
plt.tight_layout()
return fig
def plot_kmer_distribution(kmer_freq_vector, kmers):
"""
Plot a histogram of k-mer frequencies for the entire vector.
(Optional if you want a quick distribution overview)
"""
fig, ax = plt.subplots(figsize=(10, 4))
ax.bar(range(len(kmer_freq_vector)), kmer_freq_vector, color='blue', alpha=0.6)
ax.set_xlabel("K-mer Index")
ax.set_ylabel("Frequency")
ax.set_title("K-mer Frequency Distribution")
ax.set_xticks([])
plt.tight_layout()
return fig
def create_step_visualization(important_kmers, human_prob):
"""
Re-implementation of your step-wise probability plot.
Shows how each top k-mer 'pushes' the probability from 0.5 to the final value.
"""
fig = plt.figure(figsize=(8, 5))
ax = fig.add_subplot(111)
# Start from 0.5
current_prob = 0.5
steps = [('Start', current_prob, 0)]
for kmer in important_kmers:
change = kmer['impact'] * (-1 if kmer['direction'] == 'non-human' else 1)
current_prob += change
steps.append((kmer['kmer'], current_prob, change))
x_vals = range(len(steps))
y_vals = [s[1] for s in steps]
ax.step(x_vals, y_vals, 'b-', where='post', label='Probability', linewidth=2)
ax.plot(x_vals, y_vals, 'b.', markersize=10)
# Reference line at 0.5
ax.axhline(y=0.5, color='r', linestyle='--', label='Neutral (0.5)')
ax.set_ylim(0, 1)
ax.set_ylabel('Human Probability')
ax.set_title(f'K-mer Contributions (final p={human_prob:.3f})')
ax.grid(True, linestyle='--', alpha=0.7)
for i, (kmer, prob, change) in enumerate(steps):
ax.annotate(kmer,
(i, prob),
xytext=(0, 10 if i % 2 == 0 else -20),
textcoords='offset points',
ha='center',
rotation=45)
if i > 0:
change_text = f'{change:+.3f}'
color = 'green' if change > 0 else 'red'
ax.annotate(change_text,
(i, prob),
xytext=(0, -20 if i % 2 == 0 else 10),
textcoords='offset points',
ha='center',
color=color)
ax.legend()
plt.tight_layout()
return fig
def plot_kmer_freq_and_sigma(important_kmers):
"""
Plot frequencies vs. sigma from mean for the top k-mers.
This reuses logic from the original create_visualization second subplot,
but as its own function for clarity.
"""
fig, ax = plt.subplots(figsize=(8, 5))
# Prepare data
kmers = [k['kmer'] for k in important_kmers]
frequencies = [k['occurrence'] for k in important_kmers]
sigmas = [k['sigma'] for k in important_kmers]
colors = ['green' if k['direction'] == 'human' else 'red' for k in important_kmers]
x = np.arange(len(kmers))
width = 0.35
# Frequency bars
ax.bar(x - width/2, frequencies, width, label='Frequency (%)', color=colors, alpha=0.6)
# Create a twin axis for sigma
ax2 = ax.twinx()
# Sigma bars
ax2.bar(x + width/2, sigmas, width, label='σ from mean',
color=[c if s > 0 else 'gray' for c, s in zip(colors, sigmas)], alpha=0.3)
ax.set_xticks(x)
ax.set_xticklabels(kmers, rotation=45)
ax.set_ylabel('Frequency (%)')
ax2.set_ylabel('Standard Deviations (σ) from Mean')
ax.set_title("K-mer Frequencies & Statistical Significance")
lines1, labels1 = ax.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax.legend(lines1 + lines2, labels1 + labels2, loc='best')
plt.tight_layout()
return fig
# --------------- Main Prediction Logic ---------------
def predict_fasta(
file_obj,
k_size=4,
top_k=10,
advanced_analysis=False
):
"""
Main function to predict classes for each sequence in an uploaded FASTA.
Returns:
- Combined textual report for all sequences
- A list of generated PIL Image plots
"""
# 1. Read raw text from file or string
if file_obj is None:
return "Please upload a FASTA file", []
try:
if isinstance(file_obj, str):
text = file_obj
else:
text = file_obj.decode('utf-8', errors='replace')
except Exception as e:
return f"Error reading file: {str(e)}", []
# 2. Parse the FASTA
sequences = parse_fasta(text)
if not sequences:
return "No valid FASTA sequences found!", []
# 3. Load model & scaler
try:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = VirusClassifier(input_shape=(4 ** k_size)).to(device)
state_dict = torch.load('model.pt', map_location=device)
model.load_state_dict(state_dict)
model.eval()
scaler = joblib.load('scaler.pkl')
except Exception as e:
return f"Error loading model/scaler: {str(e)}", []
# 4. Prepare k-mer dictionary for reference
all_kmers = [''.join(p) for p in product("ACGT", repeat=k_size)]
kmer_dict = {km: i for i, km in enumerate(all_kmers)}
# 5. Iterate over sequences and build output
final_text_report = []
plots = []
for idx, (header, seq) in enumerate(sequences, start=1):
seq_stats = compute_sequence_stats(seq)
# Convert sequence -> raw freq -> scaled freq
raw_kmer_freq = sequence_to_kmer_vector(seq, k=k_size)
scaled_kmer_freq = scaler.transform(raw_kmer_freq.reshape(1, -1))
X_tensor = torch.FloatTensor(scaled_kmer_freq).to(device)
# Predict
with torch.no_grad():
output = model(X_tensor)
probs = torch.softmax(output, dim=1)
# Determine class
pred_class = torch.argmax(probs, dim=1).item()
pred_label = 'human' if pred_class == 1 else 'non-human'
human_prob = float(probs[0][1])
non_human_prob = float(probs[0][0])
confidence = float(torch.max(probs[0]).item())
# Compute gradient-based importance
importance, target_prob = model.get_gradient_importance(X_tensor, class_index=1)
importance = importance[0].cpu().numpy() # shape: (num_features,)
# Identify top-k features (by absolute gradient)
abs_importance = np.abs(importance)
sorted_indices = np.argsort(abs_importance)[::-1]
top_indices = sorted_indices[:top_k]
# Build a list of top k-mers
top_kmers_info = []
for i in top_indices:
kmer_name = all_kmers[i]
imp_val = float(importance[i])
direction = 'human' if imp_val > 0 else 'non-human'
freq_perc = float(raw_kmer_freq[i] * 100.0) # in percent
sigma = float(scaled_kmer_freq[0][i]) # This is the scaled value (stdev from mean if the scaler is StandardScaler)
top_kmers_info.append({
'kmer': kmer_name,
'impact': abs(imp_val),
'direction': direction,
'occurrence': freq_perc,
'sigma': sigma
})
# Text summary for this sequence
seq_report = []
seq_report.append(f"=== Sequence {idx} ===")
seq_report.append(f"Header: {header}")
seq_report.append(f"Length: {seq_stats['length']}")
seq_report.append(f"GC Content: {seq_stats['gc_content']:.2f}%")
seq_report.append(f"A: {seq_stats['counts']['A']}, C: {seq_stats['counts']['C']}, G: {seq_stats['counts']['G']}, T: {seq_stats['counts']['T']}")
seq_report.append(f"Prediction: {pred_label} (Confidence: {confidence:.4f})")
seq_report.append(f" Human Probability: {human_prob:.4f}")
seq_report.append(f" Non-human Probability: {non_human_prob:.4f}")
seq_report.append(f"\nTop-{top_k} Influential k-mers (by gradient magnitude):")
for tkm in top_kmers_info:
seq_report.append(
f" {tkm['kmer']}: pushes towards {tkm['direction']} "
f"(impact={tkm['impact']:.4f}), occurrence={tkm['occurrence']:.2f}%, "
f"sigma={tkm['sigma']:.2f}"
)
final_text_report.append("\n".join(seq_report))
# 6. Generate Plots (for each sequence)
if advanced_analysis:
# 6A. SHAP-like bar chart
fig_shap = plot_shap_like_bars(
kmers=all_kmers,
importance_values=importance,
top_k=top_k
)
buf_shap = io.BytesIO()
fig_shap.savefig(buf_shap, format='png', bbox_inches='tight', dpi=150)
buf_shap.seek(0)
plots.append(Image.open(buf_shap))
plt.close(fig_shap)
# 6B. k-mer distribution histogram
fig_kmer_dist = plot_kmer_distribution(raw_kmer_freq, all_kmers)
buf_dist = io.BytesIO()
fig_kmer_dist.savefig(buf_dist, format='png', bbox_inches='tight', dpi=150)
buf_dist.seek(0)
plots.append(Image.open(buf_dist))
plt.close(fig_kmer_dist)
# 6C. Original step visualization for top k k-mers
# Sort by actual 'impact' to preserve that step logic
# (largest absolute impact first)
top_kmers_info_step = sorted(top_kmers_info, key=lambda x: x['impact'], reverse=True)
fig_step = create_step_visualization(top_kmers_info_step, human_prob)
buf_step = io.BytesIO()
fig_step.savefig(buf_step, format='png', bbox_inches='tight', dpi=150)
buf_step.seek(0)
plots.append(Image.open(buf_step))
plt.close(fig_step)
# 6D. Frequency vs. sigma bar chart
fig_freq_sigma = plot_kmer_freq_and_sigma(top_kmers_info_step)
buf_freq_sigma = io.BytesIO()
fig_freq_sigma.savefig(buf_freq_sigma, format='png', bbox_inches='tight', dpi=150)
buf_freq_sigma.seek(0)
plots.append(Image.open(buf_freq_sigma))
plt.close(fig_freq_sigma)
# Combine all text results
combined_text = "\n\n".join(final_text_report)
return combined_text, plots
# --------------- Gradio Interface ---------------
def run_prediction(
file_obj,
k_size,
top_k,
advanced_analysis
):
"""
Wrapper for Gradio to handle the outputs in (text, List[Image]) form.
"""
text_output, pil_images = predict_fasta(
file_obj=file_obj,
k_size=k_size,
top_k=top_k,
advanced_analysis=advanced_analysis
)
return text_output, pil_images
with gr.Blocks() as demo:
gr.Markdown("# Virus Host Classifier (Improved!)")
gr.Markdown(
"Upload a FASTA file and configure k-mer size, number of top features, "
"and whether to run advanced analysis (plots of SHAP-like bars & k-mer distribution)."
)
with gr.Row():
with gr.Column():
fasta_file = gr.File(label="Upload FASTA file", type="binary")
kmer_slider = gr.Slider(minimum=2, maximum=6, value=4, step=1, label="K-mer Size")
topk_slider = gr.Slider(minimum=5, maximum=20, value=10, step=1, label="Top-k Features")
advanced_check = gr.Checkbox(value=False, label="Advanced Analysis")
predict_button = gr.Button("Predict")
with gr.Column():
results_text = gr.Textbox(
label="Results",
lines=20,
placeholder="Prediction results will appear here..."
)
# We can display multiple images in a Gallery or as separate outputs.
plots_gallery = gr.Gallery(label="Analysis Plots").style(grid=[2], height="auto")
predict_button.click(
fn=run_prediction,
inputs=[fasta_file, kmer_slider, topk_slider, advanced_check],
outputs=[results_text, plots_gallery]
)
if __name__ == "__main__":
demo.launch(share=True)
|