Spaces:
Running
Running
File size: 9,355 Bytes
5263bd3 f1d4be6 5263bd3 4a7c026 40fe6da a6886ca 5263bd3 b5edb58 f1d4be6 a6886ca f1d4be6 a6886ca 870813f f1d4be6 870813f a6886ca ef80028 a6886ca ef80028 a6886ca ef80028 a6886ca f1d4be6 ef80028 a6886ca ef80028 a6886ca ef80028 a6886ca ef80028 f1d4be6 ef80028 7e19501 ef80028 f1d4be6 ef80028 f1d4be6 3b775b7 8c49ca8 ef80028 a6886ca ef80028 a6886ca ef80028 3b775b7 ef80028 a6886ca ef80028 b5edb58 f1d4be6 ef80028 f1d4be6 ef80028 f1d4be6 ef80028 f1d4be6 ef80028 f1d4be6 0681a74 f1d4be6 8f84058 ef80028 f1d4be6 ef80028 f1d4be6 ef80028 723da6d ef80028 a6886ca b5edb58 ef80028 f1d4be6 ef80028 f1d4be6 ef80028 f1d4be6 ef80028 f1d4be6 ef80028 f1d4be6 ef80028 a6886ca ef80028 f1d4be6 a6886ca ef80028 f1d4be6 ef80028 f1d4be6 ef80028 f1d4be6 ef80028 f1d4be6 ef80028 8f84058 0681a74 ef80028 0d2d632 723da6d ef80028 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
def parse_fasta(text):
"""
Parses FASTA formatted text into a list of (header, sequence).
"""
sequences = []
current_header = None
current_sequence = []
for line in text.strip().split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""
Convert a sequence to a k-mer frequency vector.
"""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers
return vec
def calculate_shap_values(model, x_tensor):
"""
Calculate SHAP-like values using a simple ablation approach.
"""
model.eval()
with torch.no_grad():
baseline_output = model(x_tensor)
baseline_prob = torch.softmax(baseline_output, dim=1)[0, 1].item()
shap_values = []
for i in range(x_tensor.shape[1]):
perturbed_input = x_tensor.clone()
perturbed_input[0, i] = 0 # Ablate feature
output = model(perturbed_input)
prob = torch.softmax(output, dim=1)[0, 1].item()
shap_values.append(baseline_prob - prob)
return np.array(shap_values), baseline_prob
def create_importance_plot(shap_values, kmers, top_k=10):
"""
Create horizontal bar plot of feature importance.
"""
plt.style.use('seaborn')
fig = plt.figure(figsize=(10, 8))
# Sort by absolute importance
indices = np.argsort(np.abs(shap_values))[-top_k:]
values = shap_values[indices]
features = [kmers[i] for i in indices]
colors = ['#2ecc71' if v > 0 else '#e74c3c' for v in values]
plt.barh(range(len(values)), values, color=colors)
plt.yticks(range(len(values)), features)
plt.xlabel('Impact on Prediction (SHAP value)')
plt.title(f'Top {top_k} Most Influential k-mers')
plt.gca().invert_yaxis()
return fig
def create_contribution_plot(important_kmers, final_prob):
"""
Create waterfall plot showing cumulative feature contributions.
"""
plt.style.use('seaborn')
fig = plt.figure(figsize=(12, 6))
base_prob = 0.5
cumulative = [base_prob]
labels = ['Base']
for kmer_info in important_kmers:
cumulative.append(cumulative[-1] + kmer_info['impact'])
labels.append(kmer_info['kmer'])
plt.plot(range(len(cumulative)), cumulative, 'b-o', linewidth=2)
plt.axhline(y=0.5, color='gray', linestyle='--', alpha=0.5)
plt.xticks(range(len(labels)), labels, rotation=45)
plt.ylim(0, 1)
plt.grid(True, alpha=0.3)
plt.title('Cumulative Feature Contributions')
plt.ylabel('Probability of Human Origin')
return fig
def predict(file_obj, top_kmers=10, fasta_text=""):
"""
Main prediction function for the Gradio interface.
"""
# Handle input
if fasta_text.strip():
text = fasta_text.strip()
elif file_obj is not None:
try:
# File input will be a filepath since we specified type="filepath"
with open(file_obj, 'r') as f:
text = f.read()
except Exception as e:
return f"Error reading file: {str(e)}\nPlease ensure you're uploading a valid FASTA text file.", None, None
else:
return "Please provide a FASTA sequence either by file upload or text input.", None, None
# Parse FASTA
sequences = parse_fasta(text)
if not sequences:
return "No valid FASTA sequences found in input.", None, None
header, seq = sequences[0]
# Process sequence
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
try:
model = VirusClassifier(256).to(device)
model.load_state_dict(torch.load('model.pt', map_location=device))
scaler = joblib.load('scaler.pkl')
except Exception as e:
return f"Error loading model: {str(e)}", None, None
# Generate features
freq_vector = sequence_to_kmer_vector(seq)
scaled_vector = scaler.transform(freq_vector.reshape(1, -1))
x_tensor = torch.FloatTensor(scaled_vector).to(device)
# Calculate SHAP values and predictions
shap_values, human_prob = calculate_shap_values(model, x_tensor)
# Generate k-mer information
kmers = [''.join(p) for p in product("ACGT", repeat=4)]
important_indices = np.argsort(np.abs(shap_values))[-top_kmers:]
important_kmers = []
for idx in important_indices:
important_kmers.append({
'kmer': kmers[idx],
'impact': shap_values[idx],
'frequency': freq_vector[idx] * 100,
'significance': scaled_vector[0][idx]
})
# Format results text
results = [
f"Sequence: {header}",
f"Prediction: {'Human' if human_prob > 0.5 else 'Non-human'} Origin",
f"Confidence: {max(human_prob, 1-human_prob):.3f}",
f"Human Probability: {human_prob:.3f}",
"\nTop Contributing k-mers:",
]
for kmer in important_kmers:
direction = "β Human" if kmer['impact'] > 0 else "β Non-human"
results.append(
f"β’ {kmer['kmer']}: {direction} "
f"(impact: {kmer['impact']:.3f}, "
f"freq: {kmer['frequency']:.2f}%)"
)
# Generate plots
shap_plot = create_importance_plot(shap_values, kmers, top_kmers)
contribution_plot = create_contribution_plot(important_kmers, human_prob)
# Convert plots to images
def fig_to_image(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
buf.seek(0)
img = Image.open(buf)
plt.close(fig)
return img
return "\n".join(results), fig_to_image(shap_plot), fig_to_image(contribution_plot)
# Create Gradio interface
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.interpretation-container {
margin-top: 20px;
padding: 15px;
border-radius: 8px;
background-color: #f8f9fa;
}
"""
with gr.Blocks(css=css) as iface:
gr.Markdown("""
# Virus Host Classifier
This tool predicts whether a viral sequence is likely of human or non-human origin using k-mer frequency analysis.
### Instructions
1. Upload a FASTA file or paste your sequence in FASTA format
2. Adjust the number of top k-mers to display (default: 10)
3. View the prediction results and feature importance visualizations
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload FASTA file",
file_types=[".fasta", ".fa", ".txt"],
type="filepath" # Changed to filepath which is one of the valid options
)
text_input = gr.Textbox(
label="Or paste FASTA sequence",
placeholder=">sequence_name\nACGTACGT...",
lines=5
)
top_k = gr.Slider(
minimum=5,
maximum=20,
value=10,
step=1,
label="Number of top k-mers to display"
)
submit_btn = gr.Button("Analyze Sequence", variant="primary")
with gr.Column(scale=2):
results = gr.Textbox(label="Analysis Results", lines=10)
shap_plot = gr.Image(label="Feature Importance Plot")
contribution_plot = gr.Image(label="Cumulative Contribution Plot")
submit_btn.click(
predict,
inputs=[file_input, top_k, text_input],
outputs=[results, shap_plot, contribution_plot]
)
gr.Markdown("""
### About
- Uses 4-mer frequencies as sequence features
- Employs SHAP-like values for feature importance interpretation
- Visualizes cumulative feature contributions to the final prediction
""")
if __name__ == "__main__":
iface.launch() |