File size: 15,798 Bytes
5263bd3
 
 
 
f1d4be6
5263bd3
4a7c026
 
40fe6da
a6886ca
f1d4be6
 
 
afbf1c6
5263bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5edb58
f1d4be6
 
 
b5edb58
f1d4be6
a6886ca
f1d4be6
a6886ca
870813f
 
 
 
f1d4be6
870813f
 
 
 
 
 
 
 
 
 
 
 
 
 
a6886ca
 
f1d4be6
a6886ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1d4be6
a6886ca
f1d4be6
 
 
 
 
 
a6886ca
f1d4be6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c88c65
f1d4be6
a6886ca
f1d4be6
 
 
a6886ca
f1d4be6
a6886ca
f1d4be6
 
a6886ca
f1d4be6
 
 
 
7e19501
f1d4be6
 
b5edb58
 
 
f1d4be6
 
b5edb58
f1d4be6
b5edb58
f1d4be6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5edb58
f1d4be6
 
 
 
 
 
 
b5edb58
f1d4be6
b5edb58
 
 
f1d4be6
 
 
 
 
 
 
 
 
 
 
b5edb58
 
 
 
 
 
f1d4be6
 
 
 
6c88c65
b5edb58
3b775b7
f1d4be6
3b775b7
f1d4be6
 
 
 
 
 
 
 
 
 
 
b5edb58
f1d4be6
 
 
 
 
 
 
 
 
 
 
3b775b7
 
 
8c49ca8
f1d4be6
a6886ca
f1d4be6
 
 
 
a6886ca
f1d4be6
 
 
3b775b7
f1d4be6
 
a6886ca
f1d4be6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5edb58
f1d4be6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
723da6d
b5edb58
9d48283
a6886ca
b5edb58
f1d4be6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5edb58
f1d4be6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6886ca
f1d4be6
 
 
 
 
 
 
 
 
 
 
a6886ca
f1d4be6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d2d632
723da6d
f1d4be6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image

##############################################################################
# MODEL DEFINITION
##############################################################################

class VirusClassifier(nn.Module):
    def __init__(self, input_shape: int):
        super(VirusClassifier, self).__init__()
        self.network = nn.Sequential(
            nn.Linear(input_shape, 64),
            nn.GELU(),
            nn.BatchNorm1d(64),
            nn.Dropout(0.3),
            nn.Linear(64, 32),
            nn.GELU(),
            nn.BatchNorm1d(32),
            nn.Dropout(0.3),
            nn.Linear(32, 32),
            nn.GELU(),
            nn.Linear(32, 2)
        )

    def forward(self, x):
        return self.network(x)

##############################################################################
# UTILITIES
##############################################################################

def parse_fasta(text):
    """
    Parses FASTA formatted text into a list of (header, sequence).
    """
    sequences = []
    current_header = None
    current_sequence = []
    
    for line in text.strip().split('\n'):
        line = line.strip()
        if not line:
            continue
        if line.startswith('>'):
            if current_header:
                sequences.append((current_header, ''.join(current_sequence)))
            current_header = line[1:]
            current_sequence = []
        else:
            current_sequence.append(line.upper())
    if current_header:
        sequences.append((current_header, ''.join(current_sequence)))
    return sequences

def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
    """
    Convert a sequence to a k-mer frequency vector of size len(ACGT^k).
    """
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}
    vec = np.zeros(len(kmers), dtype=np.float32)
    
    for i in range(len(sequence) - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:
            vec[kmer_dict[kmer]] += 1

    total_kmers = len(sequence) - k + 1
    if total_kmers > 0:
        vec = vec / total_kmers

    return vec

def ablation_importance(model, x_tensor):
    """
    Calculates a simple ablation-based importance measure for each feature:
    1. Compute baseline human probability p_base.
    2. For each feature i, set x[i] = 0, re-run inference, compute new p, and 
       measure delta = p_base - p. 
    3. Return array of deltas (positive means that removing that feature 
       *decreases* the probability => that feature was pushing it higher).
    """
    model.eval()
    with torch.no_grad():
        # Baseline probability
        output = model(x_tensor)
        probs = torch.softmax(output, dim=1)
        p_base = probs[0, 1].item()

    # Store the delta importances
    importances = np.zeros(x_tensor.shape[1], dtype=np.float32)

    # For efficiency, we do ablation one feature at a time
    for i in range(x_tensor.shape[1]):
        x_copy = x_tensor.clone()
        x_copy[0, i] = 0.0  # Ablate this feature
        with torch.no_grad():
            output_ablation = model(x_copy)
            probs_ablation = torch.softmax(output_ablation, dim=1)
            p_ablation = probs_ablation[0, 1].item()
        # Delta
        importances[i] = p_base - p_ablation
    
    return importances, p_base

##############################################################################
# PLOTTING
##############################################################################

def create_step_and_frequency_plot(important_kmers, human_prob, title):
    """
    Creates a combined step plot (showing how each k-mer modifies the probability)
    and a frequency vs. sigma bar chart.
    """
    fig = plt.figure(figsize=(15, 10))
    
    # Create grid for subplots
    gs = plt.GridSpec(2, 1, height_ratios=[1.5, 1], hspace=0.3)
    
    # 1. Probability Step Plot
    ax1 = plt.subplot(gs[0])
    current_prob = 0.5
    steps = [('Start', current_prob, 0)]
    
    for kmer_info in important_kmers:
        change = kmer_info['impact']  # positive => pushes up, negative => pushes down
        current_prob += change
        steps.append((kmer_info['kmer'], current_prob, change))
    
    x = range(len(steps))
    y = [step[1] for step in steps]
    
    # Plot steps
    ax1.step(x, y, 'b-', where='post', label='Probability', linewidth=2)
    ax1.plot(x, y, 'b.', markersize=10)
    
    # Add reference line
    ax1.axhline(y=0.5, color='r', linestyle='--', label='Neutral (0.5)')
    
    # Customize plot
    ax1.grid(True, linestyle='--', alpha=0.7)
    ax1.set_ylim(0, 1)
    ax1.set_ylabel('Human Probability')
    ax1.set_title(f'K-mer Contributions to Prediction (final prob: {human_prob:.3f})')
    
    # Add labels for each point
    for i, (kmer, prob, change) in enumerate(steps):
        # Add k-mer label
        ax1.annotate(kmer, 
                     (i, prob),
                     xytext=(0, 10 if i % 2 == 0 else -20),
                     textcoords='offset points',
                     ha='center',
                     rotation=45)
        
        # Add change value
        if i > 0:
            change_text = f'{change:+.3f}'
            color = 'green' if change > 0 else 'red'
            ax1.annotate(change_text,
                         (i, prob),
                         xytext=(0, -20 if i % 2 == 0 else 10),
                         textcoords='offset points',
                         ha='center',
                         color=color)
    
    ax1.legend()
    
    # 2. K-mer Frequency and Sigma Plot
    ax2 = plt.subplot(gs[1])
    
    # Prepare data
    kmers = [k['kmer'] for k in important_kmers]
    frequencies = [k['occurrence'] for k in important_kmers]
    sigmas = [k['sigma'] for k in important_kmers]
    
    # Color the bars: if impact>0 => green, else red
    colors = ['g' if k['impact'] > 0 else 'r' for k in important_kmers]
    
    # Create bar plot for frequencies
    x = np.arange(len(kmers))
    width = 0.35
    
    ax2.bar(x - width/2, frequencies, width, label='Frequency (%)', color=colors, alpha=0.6)
    
    # Twin axis for sigma
    ax2_twin = ax2.twinx()
    # To highlight positive or negative sigma, pick color accordingly
    sigma_colors = []
    for s, c in zip(sigmas, colors):
        if s >= 0:
            sigma_colors.append('blue')  # above average
        else:
            sigma_colors.append('gray')  # below average
            
    ax2_twin.bar(x + width/2, sigmas, width, label='σ from Mean', color=sigma_colors, alpha=0.3)
    
    # Customize plot
    ax2.set_xticks(x)
    ax2.set_xticklabels(kmers, rotation=45)
    ax2.set_ylabel('Frequency (%)')
    ax2_twin.set_ylabel('Standard Deviations (σ) from Mean')
    ax2.set_title('K-mer Frequencies and Statistical Significance')
    
    # Add legends
    lines1, labels1 = ax2.get_legend_handles_labels()
    lines2, labels2 = ax2_twin.get_legend_handles_labels()
    ax2.legend(lines1 + lines2, labels1 + labels2, loc='upper right')
    
    plt.tight_layout()
    return fig

def create_shap_like_bar_plot(impact_values, kmer_list, top_k):
    """
    Creates a horizontal bar plot showing the top_k features by absolute impact.
    impact_values: array of float (length=256).
    kmer_list: list of all k=4 kmers in order.
    top_k: integer, how many top features to display.
    """
    # Sort by absolute impact
    indices_sorted = np.argsort(np.abs(impact_values))[::-1]
    top_indices = indices_sorted[:top_k]
    
    top_impacts = impact_values[top_indices]
    top_kmers = [kmer_list[i] for i in top_indices]
    
    fig = plt.figure(figsize=(8, 6))
    plt.barh(range(len(top_impacts)), top_impacts, color=['green' if i > 0 else 'red' for i in top_impacts])
    plt.yticks(range(len(top_impacts)), top_kmers)
    plt.xlabel("Impact on Human Probability (Ablation)")
    plt.title(f"Top {top_k} K-mers by Absolute Impact")
    plt.gca().invert_yaxis()  # Highest at top
    plt.tight_layout()
    return fig

def create_global_bar_plot(impact_values, kmer_list):
    """
    Creates a bar plot for ALL features (256) to see the global distribution.
    """
    fig = plt.figure(figsize=(12, 6))
    indices_sorted = np.argsort(np.abs(impact_values))[::-1]
    sorted_impacts = impact_values[indices_sorted]
    sorted_kmers = [kmer_list[i] for i in indices_sorted]
    
    plt.bar(range(len(sorted_impacts)), sorted_impacts, 
            color=['green' if i > 0 else 'red' for i in sorted_impacts])
    plt.title("Global Impact of All 256 K-mers (Ablation Method)")
    plt.xlabel("K-mer (sorted by |impact|)")
    plt.ylabel("Impact on Human Probability")
    # Optionally, we can skip labeling all 256 on x-axis. 
    # But we can show only the top/bottom or none for clarity.
    plt.tight_layout()
    return fig

##############################################################################
# MAIN PREDICTION FUNCTION
##############################################################################

def predict(file_obj, top_kmers=10, advanced_plots=False, fasta_text=""):
    """
    Main prediction function called by Gradio.
    - file_obj: optional uploaded FASTA file
    - top_kmers: number of top k-mers to display in the main SHAP-like plot
    - advanced_plots: bool, whether to return global bar plots
    - fasta_text: optional direct-pasted FASTA text
    """
    # Priority: If user pasted text, use that; otherwise use uploaded file.
    if fasta_text.strip():
        text = fasta_text.strip()
    else:
        if file_obj is None:
            return "No FASTA input provided", None, None, None
        try:
            if isinstance(file_obj, str):
                text = file_obj
            else:
                text = file_obj.decode('utf-8')
        except Exception as e:
            return f"Error reading file: {str(e)}", None, None, None

    # Parse FASTA
    sequences = parse_fasta(text)
    if len(sequences) == 0:
        return "No valid FASTA sequences found", None, None, None
    header, seq = sequences[0]

    # Load model + scaler
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    model = VirusClassifier(256).to(device)
    try:
        state_dict = torch.load('model.pt', map_location=device)
        model.load_state_dict(state_dict)
        scaler = joblib.load('scaler.pkl')
    except Exception as e:
        return f"Error loading model or scaler: {str(e)}", None, None, None

    # Prepare the vector
    raw_freq_vector = sequence_to_kmer_vector(seq, k=4)
    scaled_vector = scaler.transform(raw_freq_vector.reshape(1, -1))
    X_tensor = torch.FloatTensor(scaled_vector).to(device)

    # Compute ablation-based importances
    importances, p_base = ablation_importance(model, X_tensor)
    # p_base is baseline human probability

    # We also want frequency in % and sigma from mean
    # If your scaler is e.g. StandardScaler, then "scaled_vector[0][i]" is
    # how many std devs from the mean that feature is. 
    # We'll gather info in a list of dicts for each k-mer.
    kmers_4 = [''.join(p) for p in product("ACGT", repeat=4)]
    kmer_dict = {km: i for i, km in enumerate(kmers_4)}

    # We'll sort by absolute impact to get the top 10 by default.
    abs_sorted_idx = np.argsort(np.abs(importances))[::-1]
    # But for the final step/frequency plot we only show top_kmers
    top_indices = abs_sorted_idx[:top_kmers]

    # Build a list of the top k-mers
    important_kmers = []
    for idx in top_indices:
        # "impact" is how much that feature changed the probability
        impact = importances[idx]
        # raw frequency => raw_freq_vector[idx] * 100 for %
        freq_pct = float(raw_freq_vector[idx] * 100.0)
        # sigma => scaled_vector[0][idx]
        sigma_val = float(scaled_vector[0][idx])

        important_kmers.append({
            'kmer': kmers_4[idx],
            'impact': impact,
            'occurrence': freq_pct,
            'sigma': sigma_val
        })
    
    # For text output
    # We decide final class based on model's direct output
    with torch.no_grad():
        output = model(X_tensor)
        probs = torch.softmax(output, dim=1)
    pred_class = 1 if probs[0,1] > probs[0,0] else 0
    pred_label = 'human' if pred_class == 1 else 'non-human'
    human_prob = probs[0,1].item()
    nonhuman_prob = probs[0,0].item()
    confidence = max(human_prob, nonhuman_prob)

    results_text = (f"Sequence: {header}\n"
                    f"Prediction: {pred_label}\n"
                    f"Confidence: {confidence:.4f}\n"
                    f"Human probability: {human_prob:.4f}\n"
                    f"Non-human probability: {nonhuman_prob:.4f}\n"
                    f"Most influential k-mers (by ablation impact):\n")
    
    for kmer_info in important_kmers:
        # sign => if impact>0 => removing it lowers p(human), so it was pushing p(human) up
        direction = "UP (toward human)" if kmer_info['impact'] > 0 else "DOWN (toward non-human)"
        results_text += (
            f"  {kmer_info['kmer']}: {direction}, "
            f"Impact={kmer_info['impact']:.4f}, "
            f"Occ={kmer_info['occurrence']:.2f}% of seq, "
            f"{abs(kmer_info['sigma']):.2f}σ "
            + ("above" if kmer_info['sigma']>0 else "below")
            + " mean\n"
        )

    # PLOT 1: A SHAP-like bar plot for the top K features
    shap_fig = create_shap_like_bar_plot(importances, kmers_4, top_kmers)

    # PLOT 2: Step + frequency plot for the top K features
    step_fig = create_step_and_frequency_plot(important_kmers, human_prob, header)

    # PLOT 3 (optional advanced): global bar plot of all 256 features
    global_fig = None
    if advanced_plots:
        global_fig = create_global_bar_plot(importances, kmers_4)

    # Convert figures to PIL Images
    def fig_to_image(fig):
        buf = io.BytesIO()
        fig.savefig(buf, format='png', bbox_inches='tight', dpi=200)
        buf.seek(0)
        im = Image.open(buf)
        plt.close(fig)
        return im

    shap_img = fig_to_image(shap_fig)
    step_img = fig_to_image(step_fig)
    if global_fig is not None:
        global_img = fig_to_image(global_fig)
    else:
        global_img = None

    return results_text, shap_img, step_img, global_img

##############################################################################
# GRADIO INTERFACE
##############################################################################

title_text = "Virus Host Classifier"
description_text = """
Upload or paste a FASTA sequence to predict if it's likely **human** or **non-human** origin.
- **k=4** k-mers are used as features.
- We display ablation-based feature importance for interpretability.
- Advanced plots can be toggled to see the global distribution of all 256 k-mer impacts.
"""

iface = gr.Interface(
    fn=predict,
    inputs=[
        gr.File(label="Upload FASTA file", type="binary", optional=True),
        gr.Slider(label="Number of top k-mers to show", minimum=1, maximum=50, value=10, step=1),
        gr.Checkbox(label="Show advanced (global) plots?", value=False),
        gr.Textbox(label="Or paste FASTA text here", lines=5, placeholder=">header\nACGTACGT...")
    ],
    outputs=[
        gr.Textbox(label="Results", lines=10),
        gr.Image(label="SHAP-like Top-k K-mer Bar Plot"),
        gr.Image(label="Step & Frequency Plot (Top-k)"),
        gr.Image(label="Global 256-K-mer Plot (advanced)", optional=True)
    ],
    title=title_text,
    description=description_text
)

if __name__ == "__main__":
    iface.launch(share=True)