HostClassifier / app.py
hiyata's picture
Update app.py
0e7de0c verified
raw
history blame
16.9 kB
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image
###############################################################################
# Model Definition
###############################################################################
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
def get_feature_importance(self, x):
"""
Calculate gradient-based feature importance, specifically for the
'human' class (index=1) by computing gradient of that probability wrt x.
"""
x.requires_grad_(True)
output = self.network(x)
probs = torch.softmax(output, dim=1)
# Probability of 'human' class (index=1)
human_prob = probs[..., 1]
if x.grad is not None:
x.grad.zero_()
human_prob.backward()
importance = x.grad # shape: (batch_size, n_features)
return importance, float(human_prob)
###############################################################################
# Utility Functions
###############################################################################
def parse_fasta(text):
"""Parses text input in FASTA format into a list of (header, sequence)."""
sequences = []
current_header = None
current_sequence = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""Convert a single nucleotide sequence to a k-mer frequency vector."""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers # normalize frequencies
return vec
###############################################################################
# Visualization
###############################################################################
def create_shap_waterfall_plot(important_kmers, all_kmer_importance, human_prob, title):
"""
Create a SHAP-like waterfall plot:
- Start at baseline = 0.5
- Add a bar for "Other" which is the combined effect of all less-important k-mers
- Then apply each of the top k-mers in descending order of absolute importance
- Show final predicted human probability as the endpoint
"""
# 1) Sort 'important_kmers' by absolute impact descending
sorted_kmers = sorted(important_kmers, key=lambda x: x['impact'], reverse=True)
# 2) Compute the total effect of "other" k-mers
# We have 256 total features. We selected top 10. Sum the rest.
top_ids = set([km['idx'] for km in sorted_kmers])
other_contributions = []
for i, val in enumerate(all_kmer_importance):
if i not in top_ids:
other_contributions.append(val)
# sum up those "other" contributions
other_sum = np.sum(other_contributions)
# The "impact" for "other" will be the absolute value, direction depends on sign
other_impact = float(abs(other_sum))
other_direction = "human" if other_sum > 0 else "non-human"
# 3) Build a list of all bars: first "other", then each top k-mer
# Each bar needs: name, raw_contribution_value
# We'll store (label, contribution). The sign indicates direction.
bars = []
bars.append(("Other", other_sum)) # lumps the leftover k-mers
for km in sorted_kmers:
# We re-inject the sign on the raw gradient
# (We stored only the absolute in "impact," so let's create a signed value)
signed_val = km['impact'] if km['direction'] == 'human' else -km['impact']
bars.append((km['kmer'], signed_val))
# 4) Waterfall plot data:
# We'll accumulate partial sums from baseline=0.5
baseline = 0.5
running_val = baseline
x_labels = []
y_vals = []
bar_colors = []
# We'll use green for positive contributions (pushing toward 'human'),
# red for negative contributions (pushing away from 'human')
for (label, contrib) in bars:
x_labels.append(label)
# new value after adding this contribution
new_val = running_val + (0.05 * contrib)
# ^ scaled by 0.05 for better display. Adjust as desired.
y_vals.append((running_val, new_val))
running_val = new_val
if contrib >= 0:
bar_colors.append("green")
else:
bar_colors.append("red")
final_prob = running_val
# Final point is the model's predicted probability (not always exact, but this is a shap-like idea).
# If we want to forcibly ensure final_prob = human_prob, we could do:
# correction = human_prob - running_val
# running_val += correction
# but for now let's keep the "waterfall" purely additive from the gradient.
# Let's plot:
fig, ax = plt.subplots(figsize=(10, 6))
# We'll create the bars manually
x_positions = np.arange(len(x_labels))
last_end = baseline
for i, ((start_val, end_val), color) in enumerate(zip(y_vals, bar_colors)):
# The bar's height is the difference
height = end_val - start_val
ax.bar(i, height, bottom=start_val, color=color, edgecolor='black', alpha=0.7)
ax.text(i, (start_val + end_val) / 2, f"{height:+.3f}", ha='center', va='center', color='white', fontsize=8)
ax.axhline(y=baseline, color='black', linestyle='--', linewidth=1)
ax.set_xticks(x_positions)
ax.set_xticklabels(x_labels, rotation=45, ha='right')
ax.set_ylim(0, 1)
ax.set_ylabel("Running Probability (Human)")
ax.set_title(f"SHAP-like Waterfall — Final Probability: {final_prob:.3f} (Model Probability: {human_prob:.3f})")
plt.tight_layout()
return fig
def create_frequency_sigma_plot(important_kmers, title):
"""Creates a bar plot of the top k-mers (by importance) showing frequency (%) and σ from mean."""
# Sort by absolute impact
sorted_kmers = sorted(important_kmers, key=lambda x: x['impact'], reverse=True)
kmers = [k["kmer"] for k in sorted_kmers]
frequencies = [k["occurrence"] for k in sorted_kmers] # in %
sigmas = [k["sigma"] for k in sorted_kmers]
directions = [k["direction"] for k in sorted_kmers]
x = np.arange(len(kmers))
width = 0.4
fig, ax_bar = plt.subplots(figsize=(10, 6))
# Bar for frequency
bars_freq = ax_bar.bar(
x - width/2, frequencies, width, alpha=0.7,
color=["green" if d=="human" else "red" for d in directions],
label="Frequency (%)"
)
ax_bar.set_ylabel("Frequency (%)")
ax_bar.set_ylim(0, max(frequencies) * 1.2 if frequencies else 1)
# Twin axis for σ
ax_bar_twin = ax_bar.twinx()
bars_sigma = ax_bar_twin.bar(
x + width/2, sigmas, width, alpha=0.5, color="gray", label="σ from Mean"
)
ax_bar_twin.set_ylabel("Standard Deviations (σ)")
ax_bar.set_title(f"Frequency & σ from Mean for Top k-mers — {title}")
ax_bar.set_xticks(x)
ax_bar.set_xticklabels(kmers, rotation=45, ha='right')
# Combined legend
lines1, labels1 = ax_bar.get_legend_handles_labels()
lines2, labels2 = ax_bar_twin.get_legend_handles_labels()
ax_bar.legend(lines1 + lines2, labels1 + labels2, loc="upper right")
plt.tight_layout()
return fig
def create_importance_bar_plot(important_kmers, title):
"""
Create a simple bar chart showing the absolute gradient magnitude
for the top k-mers, sorted descending.
"""
sorted_kmers = sorted(important_kmers, key=lambda x: x['impact'], reverse=True)
kmers = [k['kmer'] for k in sorted_kmers]
impacts = [k['impact'] for k in sorted_kmers]
directions = [k["direction"] for k in sorted_kmers]
x = np.arange(len(kmers))
fig, ax = plt.subplots(figsize=(10, 6))
bar_colors = ["green" if d=="human" else "red" for d in directions]
ax.bar(x, impacts, color=bar_colors, alpha=0.7)
ax.set_xticks(x)
ax.set_xticklabels(kmers, rotation=45, ha='right')
ax.set_title(f"Absolute Feature Importance (Top k-mers) — {title}")
ax.set_ylabel("Gradient Magnitude")
ax.grid(axis="y", alpha=0.3)
plt.tight_layout()
return fig
###############################################################################
# Prediction Function
###############################################################################
def predict(file_obj):
"""
Main function for Gradio:
1. Reads the uploaded FASTA file or text.
2. Loads the model and scaler.
3. Generates predictions, probabilities, and top k-mers.
4. Returns multiple outputs:
- A textual summary (Markdown).
- Waterfall plot.
- Frequency & sigma plot.
- Absolute importance bar plot.
"""
# 0. Basic file read
if file_obj is None:
return (
"Please upload a FASTA file.",
None,
None,
None
)
try:
# If user provided raw text, use that
if isinstance(file_obj, str):
text = file_obj
else:
# If user uploaded a file, decode it
text = file_obj.decode('utf-8')
except Exception as e:
return (
f"Error reading file: {str(e)}",
None,
None,
None
)
# 1. Parse FASTA
sequences = parse_fasta(text)
if len(sequences) == 0:
return (
"No valid FASTA sequences found. Please check your input.",
None,
None,
None
)
# We’ll just classify the first sequence for demonstration
header, seq = sequences[0]
# 2. Create k-mer vector & load model
k = 4
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
# Prepare raw freq vector & scale
raw_freq_vector = sequence_to_kmer_vector(seq, k=k)
# Load model & scaler
model = VirusClassifier(input_shape=4**k).to(device)
state_dict = torch.load('model.pt', map_location=device)
model.load_state_dict(state_dict)
scaler = joblib.load('scaler.pkl')
model.eval()
scaled_vector = scaler.transform(raw_freq_vector.reshape(1, -1))
X_tensor = torch.FloatTensor(scaled_vector).to(device)
# 3. Inference
with torch.no_grad():
logits = model(X_tensor)
probs = torch.softmax(logits, dim=1)
human_prob = float(probs[0][1])
non_human_prob = float(probs[0][0])
pred_class = 1 if human_prob >= non_human_prob else 0
pred_label = "human" if pred_class == 1 else "non-human"
confidence = float(max(probs[0]))
# 4. Feature importance
importance, hum_prob_grad = model.get_feature_importance(X_tensor)
# shape: [1, 256]
kmer_importances = importance[0].cpu().numpy()
# We’ll store them as a dictionary: index -> (k-mer, importance)
# Build up a dict for k-mer strings
kmers_list = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers_list)}
# 5. Get the top 10 k-mers by absolute importance
abs_importance = np.abs(kmer_importances)
top_k = 10
top_idxs = np.argsort(abs_importance)[-top_k:][::-1] # descending
important_kmers = []
for idx in top_idxs:
# Find the k-mer by index
kmer_str = kmers_list[idx]
# direction
direction = "human" if kmer_importances[idx] > 0 else "non-human"
# frequency in % from raw_freq_vector
freq_percent = float(raw_freq_vector[idx] * 100)
# sigma from scaled vector
sigma_val = float(scaled_vector[0][idx])
important_kmers.append({
'kmer': kmer_str,
'idx': idx,
'impact': float(abs_importance[idx]),
'direction': direction,
'occurrence': freq_percent,
'sigma': sigma_val
})
# 6. Text Summary
summary_text = (
f"**Sequence Header**: {header}\n\n"
f"**Predicted Label**: {pred_label}\n"
f"**Confidence**: {confidence:.4f}\n\n"
f"**Human Probability**: {human_prob:.4f}\n"
f"**Non-human Probability**: {non_human_prob:.4f}\n\n"
"### Most Influential k-mers:\n"
)
for km in important_kmers:
direction_text = f"(pushes toward {km['direction']})"
freq_text = f"{km['occurrence']:.2f}%"
sigma_text = f"{abs(km['sigma']):.2f}σ " + ("above" if km['sigma']>0 else "below") + " mean"
summary_text += (
f"- **{km['kmer']}**: impact={km['impact']:.4f}, {direction_text}, "
f"occurrence={freq_text}, ({sigma_text})\n"
)
# 7. Plots
# a) SHAP-like Waterfall Plot
fig_waterfall = create_shap_waterfall_plot(
important_kmers,
kmer_importances,
human_prob,
f"{header}"
)
buf1 = io.BytesIO()
fig_waterfall.savefig(buf1, format='png', bbox_inches='tight', dpi=120)
buf1.seek(0)
waterfall_img = Image.open(buf1)
plt.close(fig_waterfall)
# b) Frequency & σ Plot (top 10 k-mers)
fig_freq_sigma = create_frequency_sigma_plot(
important_kmers,
f"{header}"
)
buf2 = io.BytesIO()
fig_freq_sigma.savefig(buf2, format='png', bbox_inches='tight', dpi=120)
buf2.seek(0)
freq_sigma_img = Image.open(buf2)
plt.close(fig_freq_sigma)
# c) Absolute Importance Bar Plot
fig_imp = create_importance_bar_plot(
important_kmers,
f"{header}"
)
buf3 = io.BytesIO()
fig_imp.savefig(buf3, format='png', bbox_inches='tight', dpi=120)
buf3.seek(0)
importance_img = Image.open(buf3)
plt.close(fig_imp)
return summary_text, waterfall_img, freq_sigma_img, importance_img
except Exception as e:
return (
f"Error during prediction or visualization: {str(e)}",
None,
None,
None
)
###############################################################################
# Gradio Interface
###############################################################################
with gr.Blocks(title="Advanced Virus Host Classifier") as demo:
gr.Markdown(
"""
# Advanced Virus Host Classifier
**Upload a FASTA file** containing a single nucleotide sequence.
The model will predict whether this sequence is **human** or **non-human**,
provide a confidence score, and highlight the most influential k-mers
(using a SHAP-like waterfall plot) along with two additional plots.
"""
)
with gr.Row():
file_in = gr.File(label="Upload FASTA", type="binary")
btn = gr.Button("Run Prediction")
# We will create multiple tabs for our outputs
with gr.Tabs():
with gr.Tab("Prediction Results"):
md_out = gr.Markdown()
with gr.Tab("SHAP-like Waterfall Plot"):
water_out = gr.Image()
with gr.Tab("Frequency & σ Plot"):
freq_out = gr.Image()
with gr.Tab("Importance Bar Plot"):
imp_out = gr.Image()
# Link the button
btn.click(
fn=predict,
inputs=[file_in],
outputs=[md_out, water_out, freq_out, imp_out]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)