HostClassifier / app.py
hiyata's picture
Update app.py
56468ea verified
raw
history blame
15.2 kB
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image
###############################################################################
# 1. MODEL DEFINITION
###############################################################################
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
###############################################################################
# 2. FASTA PARSING & K-MER FEATURE ENGINEERING
###############################################################################
def parse_fasta(text):
"""Parse FASTA formatted text into a list of (header, sequence)."""
sequences = []
current_header = None
current_sequence = []
for line in text.strip().split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""Convert a sequence to a k-mer frequency vector for classification."""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers
return vec
###############################################################################
# 3. SHAP-VALUE (ABLATION) CALCULATION
###############################################################################
def calculate_shap_values(model, x_tensor):
"""
Calculate SHAP values using a simple ablation approach.
Returns shap_values, prob_human
"""
model.eval()
with torch.no_grad():
# Baseline
baseline_output = model(x_tensor)
baseline_probs = torch.softmax(baseline_output, dim=1)
baseline_prob = baseline_probs[0, 1].item() # Probability of 'human' class
# Zeroing each feature to measure impact
shap_values = []
x_zeroed = x_tensor.clone()
for i in range(x_tensor.shape[1]):
original_val = x_zeroed[0, i].item()
x_zeroed[0, i] = 0.0
output = model(x_zeroed)
probs = torch.softmax(output, dim=1)
prob = probs[0, 1].item()
impact = baseline_prob - prob
shap_values.append(impact)
x_zeroed[0, i] = original_val # restore
return np.array(shap_values), baseline_prob
###############################################################################
# 4. PER-BASE SHAP AGGREGATION
###############################################################################
def compute_positionwise_scores(sequence, shap_values, k=4):
"""
Returns an array of per-base SHAP contributions by averaging
the k-mer SHAP values of all k-mers covering that base.
"""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
seq_len = len(sequence)
shap_sums = np.zeros(seq_len, dtype=np.float32)
coverage = np.zeros(seq_len, dtype=np.float32)
for i in range(seq_len - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
val = shap_values[kmer_dict[kmer]]
shap_sums[i : i + k] += val
coverage[i : i + k] += 1
with np.errstate(divide='ignore', invalid='ignore'):
shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
return shap_means
###############################################################################
# 5. PLOTTING / UTILITIES
###############################################################################
def fig_to_image(fig):
"""Convert a Matplotlib figure to a PIL Image for Gradio."""
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
buf.seek(0)
img = Image.open(buf)
plt.close(fig)
return img
def plot_linear_heatmap(shap_means, title="Per-base SHAP Heatmap", start=None, end=None):
"""
Plots a 1D heatmap of per-base SHAP contributions.
Negative = push toward Non-Human, Positive = push toward Human.
Optionally can show only a subrange (start:end).
"""
if start is not None and end is not None:
shap_means = shap_means[start:end]
subtitle = f" (positions {start}-{end})"
else:
subtitle = ""
heatmap_data = shap_means.reshape(1, -1) # shape (1, region_length)
fig, ax = plt.subplots(figsize=(12, 2))
cax = ax.imshow(heatmap_data, aspect='auto', cmap='RdBu_r')
cbar = plt.colorbar(cax, orientation='horizontal', pad=0.2)
cbar.set_label('SHAP Contribution')
ax.set_yticks([])
ax.set_xlabel('Position in Sequence')
ax.set_title(f"{title}{subtitle}")
plt.tight_layout()
return fig
def create_importance_bar_plot(shap_values, kmers, top_k=10):
"""Create a bar plot of the most important k-mers."""
plt.rcParams.update({'font.size': 10})
fig = plt.figure(figsize=(10, 5))
# Sort by absolute importance
indices = np.argsort(np.abs(shap_values))[-top_k:]
values = shap_values[indices]
features = [kmers[i] for i in indices]
colors = ['#ff9999' if v > 0 else '#99ccff' for v in values]
plt.barh(range(len(values)), values, color=colors)
plt.yticks(range(len(values)), features)
plt.xlabel('SHAP Value (impact on model output)')
plt.title(f'Top {top_k} Most Influential k-mers')
plt.gca().invert_yaxis()
return fig
def compute_gc_content(sequence):
"""Compute %GC in the sequence (A, C, G, T)."""
if not sequence:
return 0
gc_count = sequence.count('G') + sequence.count('C')
return (gc_count / len(sequence)) * 100.0
###############################################################################
# 6. MAIN ANALYSIS STEP (Gradio Step 1)
###############################################################################
def analyze_sequence(file_obj, top_kmers=10, fasta_text=""):
"""Analyzes the entire genome, returning classification and a heatmap."""
# Handle input
if fasta_text.strip():
text = fasta_text.strip()
elif file_obj is not None:
try:
with open(file_obj, 'r') as f:
text = f.read()
except Exception as e:
return (f"Error reading file: {str(e)}", None, None, None, None)
else:
return ("Please provide a FASTA sequence.", None, None, None, None)
# Parse FASTA
sequences = parse_fasta(text)
if not sequences:
return ("No valid FASTA sequences found.", None, None, None, None)
header, seq = sequences[0]
# Load model and scaler
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
try:
model = VirusClassifier(256).to(device)
model.load_state_dict(torch.load('model.pt', map_location=device))
scaler = joblib.load('scaler.pkl')
except Exception as e:
return (f"Error loading model: {str(e)}", None, None, None, None)
# Vectorize + scale
freq_vector = sequence_to_kmer_vector(seq)
scaled_vector = scaler.transform(freq_vector.reshape(1, -1))
x_tensor = torch.FloatTensor(scaled_vector).to(device)
# SHAP + classification
shap_values, prob_human = calculate_shap_values(model, x_tensor)
prob_nonhuman = 1.0 - prob_human
classification = "Human" if prob_human > 0.5 else "Non-human"
confidence = max(prob_human, prob_nonhuman)
# Build results text
results_text = (
f"Sequence: {header}\n"
f"Length: {len(seq):,} bases\n"
f"Classification: {classification}\n"
f"Confidence: {confidence:.3f}\n"
f"(Human Probability: {prob_human:.3f}, Non-human Probability: {prob_nonhuman:.3f})"
)
# K-mer importance plot
kmers = [''.join(p) for p in product("ACGT", repeat=4)]
bar_fig = create_importance_bar_plot(shap_values, kmers, top_kmers)
bar_img = fig_to_image(bar_fig)
# Per-base SHAP for entire genome
shap_means = compute_positionwise_scores(seq, shap_values, k=4)
heatmap_fig = plot_linear_heatmap(shap_means, title="Genome-wide SHAP")
heatmap_img = fig_to_image(heatmap_fig)
# Return:
# 1) results text
# 2) k-mer bar image
# 3) full-genome heatmap
# 4) the "state" we need for step 2: (sequence, shap_means)
# We'll store these in a dictionary so we can pass it around in Gradio.
state_dict = {
"seq": seq,
"shap_means": shap_means
}
return (results_text, bar_img, heatmap_img, state_dict, header)
###############################################################################
# 7. SUBREGION ANALYSIS (Gradio Step 2)
###############################################################################
def analyze_subregion(state, header, region_start, region_end):
"""
Takes stored data from step 1 and a user-chosen region.
Returns a subregion heatmap and some stats (like GC content, average SHAP).
"""
if not state or "seq" not in state or "shap_means" not in state:
return ("No sequence data found. Please run Step 1 first.", None)
seq = state["seq"]
shap_means = state["shap_means"]
# Validate bounds
region_start = max(0, min(region_start, len(seq)))
region_end = max(0, min(region_end, len(seq)))
if region_end <= region_start:
return ("Invalid region range. End must be > Start.", None)
# Subsequence
region_seq = seq[region_start:region_end]
region_shap = shap_means[region_start:region_end]
# Some stats
gc_percent = compute_gc_content(region_seq)
avg_shap = float(np.mean(region_shap))
region_info = (
f"Analyzing subregion of {header} from {region_start} to {region_end}\n"
f"Region length: {len(region_seq)} bases\n"
f"GC content: {gc_percent:.2f}%\n"
f"Average SHAP in region: {avg_shap:.4f} "
f"({'toward human' if avg_shap > 0 else 'toward non-human' if avg_shap < 0 else 'neutral'})"
)
# Plot region as small heatmap
fig = plot_linear_heatmap(shap_means,
title="Subregion SHAP",
start=region_start,
end=region_end)
heatmap_img = fig_to_image(fig)
return (region_info, heatmap_img)
###############################################################################
# 8. BUILD GRADIO INTERFACE
###############################################################################
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
"""
with gr.Blocks(css=css) as iface:
gr.Markdown("""
# Virus Host Classifier (with Interactive Region Viewer)
**Step 1**: Predict overall viral sequence origin (human vs non-human)
**Step 2**: Explore subregions to see local SHAP signals and GC content
""")
with gr.Tab("1) Full-Sequence Analysis"):
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload FASTA file",
file_types=[".fasta", ".fa", ".txt"],
type="filepath"
)
text_input = gr.Textbox(
label="Or paste FASTA sequence",
placeholder=">sequence_name\nACGTACGT...",
lines=5
)
top_k = gr.Slider(
minimum=5,
maximum=30,
value=10,
step=1,
label="Number of top k-mers to display"
)
analyze_btn = gr.Button("Analyze Sequence", variant="primary")
with gr.Column(scale=2):
results_box = gr.Textbox(
label="Classification Results", lines=7, interactive=False
)
kmer_img = gr.Image(label="Top k-mer SHAP")
genome_img = gr.Image(label="Genome-wide SHAP Heatmap")
# Hidden states that store data for step 2
# "state" will hold (sequence, shap_means).
# "header" is optional meta info
seq_state = gr.State()
header_state = gr.State()
# The "analyze_sequence" function returns 5 values, which we map here:
analyze_btn.click(
analyze_sequence,
inputs=[file_input, top_k, text_input],
outputs=[results_box, kmer_img, genome_img, seq_state, header_state]
)
with gr.Tab("2) Subregion Exploration"):
gr.Markdown("""
Select start/end positions to view local SHAP signals.
""")
with gr.Row():
region_start = gr.Number(label="Region Start", value=0)
region_end = gr.Number(label="Region End", value=500)
region_btn = gr.Button("Analyze Subregion")
subregion_info = gr.Textbox(
label="Subregion Analysis",
lines=4,
interactive=False
)
subregion_img = gr.Image(label="Subregion SHAP Heatmap")
region_btn.click(
analyze_subregion,
inputs=[seq_state, header_state, region_start, region_end],
outputs=[subregion_info, subregion_img]
)
gr.Markdown("""
### What does this interface provide?
1. **Overall Classification** (human vs non-human), using a learned model on k-mer frequencies.
2. **SHAP Analysis** (ablation-based) to see which k-mer features push classification toward or away from "human".
3. **Genome-Wide SHAP Heatmap**: Each base's average SHAP across overlapping k-mers.
4. **Subregion Exploration**:
- View SHAP signals in a user-chosen region.
- Calculate local GC content, average SHAP, etc.
### Tips
- For very large sequences (e.g., >100k bases), the full heatmap might be large; consider downsampling if needed.
- Adjust *Region Start* and *End* to explore different parts of the genome.
""")
if __name__ == "__main__":
iface.launch()