File size: 15,193 Bytes
5263bd3
 
 
 
f1d4be6
5263bd3
4a7c026
 
40fe6da
a6886ca
962ae70
 
 
 
5263bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5edb58
962ae70
 
 
 
f1d4be6
7e92f7c
870813f
 
 
 
f1d4be6
870813f
 
 
 
 
 
 
 
 
 
 
 
 
 
a6886ca
56468ea
a6886ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
962ae70
 
 
 
ef80028
a6886ca
7e92f7c
56468ea
a6886ca
f1d4be6
 
56468ea
ef80028
7e92f7c
962ae70
ef80028
56468ea
ef80028
7e92f7c
ef80028
56468ea
962ae70
7e92f7c
 
 
d76e76a
7e92f7c
56468ea
ef80028
a6886ca
962ae70
d76e76a
962ae70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d76e76a
 
962ae70
 
 
 
 
 
 
d76e76a
56468ea
d76e76a
 
56468ea
 
 
 
 
 
 
 
 
 
962ae70
 
 
56468ea
962ae70
56468ea
 
 
 
 
962ae70
56468ea
 
 
962ae70
d76e76a
 
 
 
 
56468ea
962ae70
 
 
7e92f7c
 
 
d76e76a
f1d4be6
ef80028
 
 
 
7e19501
7e92f7c
f1d4be6
ef80028
 
56468ea
ef80028
d76e76a
f1d4be6
 
56468ea
 
 
 
 
 
962ae70
 
56468ea
962ae70
 
56468ea
 
ef80028
f1d4be6
 
ef80028
f1d4be6
0681a74
 
f1d4be6
56468ea
ef80028
56468ea
f1d4be6
 
 
ef80028
56468ea
ef80028
f1d4be6
 
962ae70
ef80028
723da6d
ef80028
962ae70
a6886ca
b5edb58
56468ea
f1d4be6
56468ea
ef80028
 
 
f1d4be6
56468ea
7e92f7c
56468ea
ef80028
56468ea
 
 
 
 
 
 
 
 
 
 
 
 
7e92f7c
56468ea
 
 
 
962ae70
56468ea
962ae70
56468ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
962ae70
56468ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d76e76a
56468ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
962ae70
ef80028
962ae70
56468ea
962ae70
ef80028
 
 
 
 
f1d4be6
 
ef80028
 
56468ea
 
 
ef80028
 
56468ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef80028
56468ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef80028
 
56468ea
 
 
 
 
 
 
 
 
 
 
ef80028
0d2d632
723da6d
962ae70
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image

###############################################################################
# 1. MODEL DEFINITION
###############################################################################

class VirusClassifier(nn.Module):
    def __init__(self, input_shape: int):
        super(VirusClassifier, self).__init__()
        self.network = nn.Sequential(
            nn.Linear(input_shape, 64),
            nn.GELU(),
            nn.BatchNorm1d(64),
            nn.Dropout(0.3),
            nn.Linear(64, 32),
            nn.GELU(),
            nn.BatchNorm1d(32),
            nn.Dropout(0.3),
            nn.Linear(32, 32),
            nn.GELU(),
            nn.Linear(32, 2)
        )

    def forward(self, x):
        return self.network(x)

###############################################################################
# 2. FASTA PARSING & K-MER FEATURE ENGINEERING
###############################################################################

def parse_fasta(text):
    """Parse FASTA formatted text into a list of (header, sequence)."""
    sequences = []
    current_header = None
    current_sequence = []
    
    for line in text.strip().split('\n'):
        line = line.strip()
        if not line:
            continue
        if line.startswith('>'):
            if current_header:
                sequences.append((current_header, ''.join(current_sequence)))
            current_header = line[1:]
            current_sequence = []
        else:
            current_sequence.append(line.upper())
    if current_header:
        sequences.append((current_header, ''.join(current_sequence)))
    return sequences

def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
    """Convert a sequence to a k-mer frequency vector for classification."""
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}
    vec = np.zeros(len(kmers), dtype=np.float32)
    
    for i in range(len(sequence) - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:
            vec[kmer_dict[kmer]] += 1

    total_kmers = len(sequence) - k + 1
    if total_kmers > 0:
        vec = vec / total_kmers

    return vec

###############################################################################
# 3. SHAP-VALUE (ABLATION) CALCULATION
###############################################################################

def calculate_shap_values(model, x_tensor):
    """
    Calculate SHAP values using a simple ablation approach.
    Returns shap_values, prob_human
    """
    model.eval()
    with torch.no_grad():
        # Baseline
        baseline_output = model(x_tensor)
        baseline_probs = torch.softmax(baseline_output, dim=1)
        baseline_prob = baseline_probs[0, 1].item()  # Probability of 'human' class
        
        # Zeroing each feature to measure impact
        shap_values = []
        x_zeroed = x_tensor.clone()
        for i in range(x_tensor.shape[1]):
            original_val = x_zeroed[0, i].item()
            x_zeroed[0, i] = 0.0
            output = model(x_zeroed)
            probs = torch.softmax(output, dim=1)
            prob = probs[0, 1].item()
            impact = baseline_prob - prob
            shap_values.append(impact)
            x_zeroed[0, i] = original_val  # restore
    return np.array(shap_values), baseline_prob

###############################################################################
# 4. PER-BASE SHAP AGGREGATION
###############################################################################

def compute_positionwise_scores(sequence, shap_values, k=4):
    """
    Returns an array of per-base SHAP contributions by averaging
    the k-mer SHAP values of all k-mers covering that base.
    """
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}
    
    seq_len = len(sequence)
    shap_sums = np.zeros(seq_len, dtype=np.float32)
    coverage = np.zeros(seq_len, dtype=np.float32)
    
    for i in range(seq_len - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:
            val = shap_values[kmer_dict[kmer]]
            shap_sums[i : i + k] += val
            coverage[i : i + k] += 1

    with np.errstate(divide='ignore', invalid='ignore'):
        shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
        
    return shap_means

###############################################################################
# 5. PLOTTING / UTILITIES
###############################################################################

def fig_to_image(fig):
    """Convert a Matplotlib figure to a PIL Image for Gradio."""
    buf = io.BytesIO()
    fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
    buf.seek(0)
    img = Image.open(buf)
    plt.close(fig)
    return img

def plot_linear_heatmap(shap_means, title="Per-base SHAP Heatmap", start=None, end=None):
    """
    Plots a 1D heatmap of per-base SHAP contributions.
    Negative = push toward Non-Human, Positive = push toward Human.
    Optionally can show only a subrange (start:end).
    """
    if start is not None and end is not None:
        shap_means = shap_means[start:end]
        subtitle = f" (positions {start}-{end})"
    else:
        subtitle = ""
    
    heatmap_data = shap_means.reshape(1, -1)  # shape (1, region_length)
    
    fig, ax = plt.subplots(figsize=(12, 2))
    cax = ax.imshow(heatmap_data, aspect='auto', cmap='RdBu_r')
    cbar = plt.colorbar(cax, orientation='horizontal', pad=0.2)
    cbar.set_label('SHAP Contribution')

    ax.set_yticks([])
    ax.set_xlabel('Position in Sequence')
    ax.set_title(f"{title}{subtitle}")
    plt.tight_layout()
    return fig

def create_importance_bar_plot(shap_values, kmers, top_k=10):
    """Create a bar plot of the most important k-mers."""
    plt.rcParams.update({'font.size': 10})
    fig = plt.figure(figsize=(10, 5))
    
    # Sort by absolute importance
    indices = np.argsort(np.abs(shap_values))[-top_k:]
    values = shap_values[indices]
    features = [kmers[i] for i in indices]
    
    colors = ['#ff9999' if v > 0 else '#99ccff' for v in values]
    
    plt.barh(range(len(values)), values, color=colors)
    plt.yticks(range(len(values)), features)
    plt.xlabel('SHAP Value (impact on model output)')
    plt.title(f'Top {top_k} Most Influential k-mers')
    plt.gca().invert_yaxis()
    return fig

def compute_gc_content(sequence):
    """Compute %GC in the sequence (A, C, G, T)."""
    if not sequence:
        return 0
    gc_count = sequence.count('G') + sequence.count('C')
    return (gc_count / len(sequence)) * 100.0

###############################################################################
# 6. MAIN ANALYSIS STEP (Gradio Step 1)
###############################################################################

def analyze_sequence(file_obj, top_kmers=10, fasta_text=""):
    """Analyzes the entire genome, returning classification and a heatmap."""
    # Handle input
    if fasta_text.strip():
        text = fasta_text.strip()
    elif file_obj is not None:
        try:
            with open(file_obj, 'r') as f:
                text = f.read()
        except Exception as e:
            return (f"Error reading file: {str(e)}", None, None, None, None)
    else:
        return ("Please provide a FASTA sequence.", None, None, None, None)

    # Parse FASTA
    sequences = parse_fasta(text)
    if not sequences:
        return ("No valid FASTA sequences found.", None, None, None, None)
    
    header, seq = sequences[0]

    # Load model and scaler
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    try:
        model = VirusClassifier(256).to(device)
        model.load_state_dict(torch.load('model.pt', map_location=device))
        scaler = joblib.load('scaler.pkl')
    except Exception as e:
        return (f"Error loading model: {str(e)}", None, None, None, None)

    # Vectorize + scale
    freq_vector = sequence_to_kmer_vector(seq)
    scaled_vector = scaler.transform(freq_vector.reshape(1, -1))
    x_tensor = torch.FloatTensor(scaled_vector).to(device)

    # SHAP + classification
    shap_values, prob_human = calculate_shap_values(model, x_tensor)
    prob_nonhuman = 1.0 - prob_human
    
    classification = "Human" if prob_human > 0.5 else "Non-human"
    confidence = max(prob_human, prob_nonhuman)

    # Build results text
    results_text = (
        f"Sequence: {header}\n"
        f"Length: {len(seq):,} bases\n"
        f"Classification: {classification}\n"
        f"Confidence: {confidence:.3f}\n"
        f"(Human Probability: {prob_human:.3f}, Non-human Probability: {prob_nonhuman:.3f})"
    )

    # K-mer importance plot
    kmers = [''.join(p) for p in product("ACGT", repeat=4)]
    bar_fig = create_importance_bar_plot(shap_values, kmers, top_kmers)
    bar_img = fig_to_image(bar_fig)

    # Per-base SHAP for entire genome
    shap_means = compute_positionwise_scores(seq, shap_values, k=4)
    heatmap_fig = plot_linear_heatmap(shap_means, title="Genome-wide SHAP")
    heatmap_img = fig_to_image(heatmap_fig)

    # Return:
    # 1) results text
    # 2) k-mer bar image
    # 3) full-genome heatmap
    # 4) the "state" we need for step 2: (sequence, shap_means)
    #    We'll store these in a dictionary so we can pass it around in Gradio.
    state_dict = {
        "seq": seq,
        "shap_means": shap_means
    }

    return (results_text, bar_img, heatmap_img, state_dict, header)

###############################################################################
# 7. SUBREGION ANALYSIS (Gradio Step 2)
###############################################################################

def analyze_subregion(state, header, region_start, region_end):
    """
    Takes stored data from step 1 and a user-chosen region.
    Returns a subregion heatmap and some stats (like GC content, average SHAP).
    """
    if not state or "seq" not in state or "shap_means" not in state:
        return ("No sequence data found. Please run Step 1 first.", None)
    
    seq = state["seq"]
    shap_means = state["shap_means"]

    # Validate bounds
    region_start = max(0, min(region_start, len(seq)))
    region_end = max(0, min(region_end, len(seq)))
    if region_end <= region_start:
        return ("Invalid region range. End must be > Start.", None)

    # Subsequence
    region_seq = seq[region_start:region_end]
    region_shap = shap_means[region_start:region_end]

    # Some stats
    gc_percent = compute_gc_content(region_seq)
    avg_shap = float(np.mean(region_shap))
    
    region_info = (
        f"Analyzing subregion of {header} from {region_start} to {region_end}\n"
        f"Region length: {len(region_seq)} bases\n"
        f"GC content: {gc_percent:.2f}%\n"
        f"Average SHAP in region: {avg_shap:.4f} "
        f"({'toward human' if avg_shap > 0 else 'toward non-human' if avg_shap < 0 else 'neutral'})"
    )

    # Plot region as small heatmap
    fig = plot_linear_heatmap(shap_means, 
                              title="Subregion SHAP", 
                              start=region_start, 
                              end=region_end)
    heatmap_img = fig_to_image(fig)

    return (region_info, heatmap_img)


###############################################################################
# 8. BUILD GRADIO INTERFACE
###############################################################################

css = """
.gradio-container {
    font-family: 'IBM Plex Sans', sans-serif;
}
"""

with gr.Blocks(css=css) as iface:
    gr.Markdown("""
    # Virus Host Classifier (with Interactive Region Viewer)
    **Step 1**: Predict overall viral sequence origin (human vs non-human)  
    **Step 2**: Explore subregions to see local SHAP signals and GC content
    """)
    
    with gr.Tab("1) Full-Sequence Analysis"):
        with gr.Row():
            with gr.Column(scale=1):
                file_input = gr.File(
                    label="Upload FASTA file",
                    file_types=[".fasta", ".fa", ".txt"],
                    type="filepath"
                )
                text_input = gr.Textbox(
                    label="Or paste FASTA sequence",
                    placeholder=">sequence_name\nACGTACGT...",
                    lines=5
                )
                top_k = gr.Slider(
                    minimum=5,
                    maximum=30,
                    value=10,
                    step=1,
                    label="Number of top k-mers to display"
                )
                analyze_btn = gr.Button("Analyze Sequence", variant="primary")
                
            with gr.Column(scale=2):
                results_box = gr.Textbox(
                    label="Classification Results", lines=7, interactive=False
                )
                kmer_img = gr.Image(label="Top k-mer SHAP")
                genome_img = gr.Image(label="Genome-wide SHAP Heatmap")
        
        # Hidden states that store data for step 2
        # "state" will hold (sequence, shap_means).
        # "header" is optional meta info
        seq_state = gr.State()
        header_state = gr.State()

        # The "analyze_sequence" function returns 5 values, which we map here:
        analyze_btn.click(
            analyze_sequence,
            inputs=[file_input, top_k, text_input],
            outputs=[results_box, kmer_img, genome_img, seq_state, header_state]
        )
    
    with gr.Tab("2) Subregion Exploration"):
        gr.Markdown("""
        Select start/end positions to view local SHAP signals.
        """)
        with gr.Row():
            region_start = gr.Number(label="Region Start", value=0)
            region_end = gr.Number(label="Region End", value=500)
            region_btn = gr.Button("Analyze Subregion")
        
        subregion_info = gr.Textbox(
            label="Subregion Analysis",
            lines=4, 
            interactive=False
        )
        subregion_img = gr.Image(label="Subregion SHAP Heatmap")

        region_btn.click(
            analyze_subregion,
            inputs=[seq_state, header_state, region_start, region_end],
            outputs=[subregion_info, subregion_img]
        )
    
    gr.Markdown("""
    ### What does this interface provide?
    1. **Overall Classification** (human vs non-human), using a learned model on k-mer frequencies.
    2. **SHAP Analysis** (ablation-based) to see which k-mer features push classification toward or away from "human".
    3. **Genome-Wide SHAP Heatmap**: Each base's average SHAP across overlapping k-mers.
    4. **Subregion Exploration**:  
       - View SHAP signals in a user-chosen region.  
       - Calculate local GC content, average SHAP, etc.  

    ### Tips
    - For very large sequences (e.g., >100k bases), the full heatmap might be large; consider downsampling if needed.
    - Adjust *Region Start* and *End* to explore different parts of the genome.
    """)

if __name__ == "__main__":
    iface.launch()