Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -96,20 +96,19 @@ def calculate_shap_values(model, x_tensor):
|
|
96 |
shap_values = []
|
97 |
x_zeroed = x_tensor.clone()
|
98 |
for i in range(x_tensor.shape[1]):
|
99 |
-
|
100 |
x_zeroed[0, i] = 0.0
|
101 |
output = model(x_zeroed)
|
102 |
probs = torch.softmax(output, dim=1)
|
103 |
prob = probs[0, 1].item()
|
104 |
-
impact = baseline_prob - prob
|
105 |
shap_values.append(impact)
|
106 |
-
x_zeroed[0, i] =
|
107 |
-
|
108 |
return np.array(shap_values), baseline_prob
|
109 |
|
110 |
|
111 |
###############################################################################
|
112 |
-
# 4. PER-BASE SHAP AGGREGATION
|
113 |
###############################################################################
|
114 |
|
115 |
def compute_positionwise_scores(sequence, shap_values, k=4):
|
@@ -122,60 +121,98 @@ def compute_positionwise_scores(sequence, shap_values, k=4):
|
|
122 |
kmer_dict = {km: i for i, km in enumerate(kmers)}
|
123 |
|
124 |
seq_len = len(sequence)
|
125 |
-
|
126 |
-
# Arrays to accumulate sums (SHAP) and coverage counts
|
127 |
shap_sums = np.zeros(seq_len, dtype=np.float32)
|
128 |
coverage = np.zeros(seq_len, dtype=np.float32)
|
129 |
|
130 |
-
# Slide over the sequence, summing SHAP values for overlapping positions
|
131 |
for i in range(seq_len - k + 1):
|
132 |
kmer = sequence[i:i+k]
|
133 |
if kmer in kmer_dict:
|
134 |
-
|
135 |
-
|
136 |
-
# Accumulate it for each base in the k-mer
|
137 |
-
shap_sums[i : i + k] += value
|
138 |
coverage[i : i + k] += 1
|
139 |
|
140 |
-
# Compute the average SHAP per base (avoid divide-by-zero)
|
141 |
with np.errstate(divide='ignore', invalid='ignore'):
|
142 |
shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
|
143 |
|
144 |
return shap_means
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
147 |
"""
|
148 |
Plots a 1D heatmap of per-base SHAP contributions.
|
149 |
Negative = push toward Non-Human, Positive = push toward Human.
|
150 |
"""
|
151 |
-
|
152 |
-
heatmap_data = shap_means.reshape(1, -1)
|
153 |
-
|
154 |
fig, ax = plt.subplots(figsize=(12, 2))
|
155 |
|
156 |
-
# We'll use a diverging color map (red/blue)
|
157 |
cax = ax.imshow(heatmap_data, aspect='auto', cmap='RdBu_r')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
|
|
|
160 |
cbar = plt.colorbar(cax, orientation='horizontal', pad=0.2)
|
161 |
cbar.set_label('SHAP Contribution')
|
162 |
|
163 |
-
ax.set_yticks([])
|
164 |
-
ax.set_xlabel('Position in Sequence')
|
165 |
-
ax.set_title(
|
166 |
|
167 |
plt.tight_layout()
|
168 |
return fig
|
169 |
|
170 |
|
171 |
###############################################################################
|
172 |
-
#
|
173 |
###############################################################################
|
174 |
|
175 |
def create_importance_bar_plot(shap_values, kmers, top_k=10):
|
176 |
"""Create a bar plot of the most important k-mers."""
|
177 |
plt.rcParams.update({'font.size': 10})
|
178 |
-
plt.figure(figsize=(10,
|
179 |
|
180 |
# Sort by absolute importance
|
181 |
indices = np.argsort(np.abs(shap_values))[-top_k:]
|
@@ -188,83 +225,16 @@ def create_importance_bar_plot(shap_values, kmers, top_k=10):
|
|
188 |
plt.yticks(range(len(values)), features)
|
189 |
plt.xlabel('SHAP value (impact on model output)')
|
190 |
plt.title(f'Top {top_k} Most Influential k-mers')
|
191 |
-
plt.gca().invert_yaxis()
|
192 |
-
|
193 |
-
return plt.gcf()
|
194 |
-
|
195 |
-
def visualize_sequence_impacts(sequence, kmers, shap_values, base_prob):
|
196 |
-
"""
|
197 |
-
Create a SHAP-style visualization of sequence impacts.
|
198 |
-
Shows each k-mer's contribution in context.
|
199 |
-
"""
|
200 |
-
k = 4 # k-mer size
|
201 |
-
kmer_dict = {km: i for i, km in enumerate(kmers)}
|
202 |
-
|
203 |
-
# Find all k-mers and their impacts
|
204 |
-
kmer_impacts = []
|
205 |
-
for i in range(len(sequence) - k + 1):
|
206 |
-
kmer = sequence[i:i+k]
|
207 |
-
if kmer in kmer_dict:
|
208 |
-
impact = shap_values[kmer_dict[kmer]]
|
209 |
-
kmer_impacts.append((i, kmer, impact))
|
210 |
-
|
211 |
-
# Sort by absolute impact
|
212 |
-
kmer_impacts.sort(key=lambda x: abs(x[2]), reverse=True)
|
213 |
-
|
214 |
-
# Limit display to top 30 k-mers
|
215 |
-
display_kmers = kmer_impacts[:30]
|
216 |
-
|
217 |
-
# Calculate figure height based on number of k-mers
|
218 |
-
fig_height = min(20, max(8, len(display_kmers) * 0.4))
|
219 |
-
|
220 |
-
# Create figure with controlled size
|
221 |
-
fig = plt.figure(figsize=(12, fig_height))
|
222 |
-
ax = plt.gca()
|
223 |
-
|
224 |
-
# Add title and base value
|
225 |
-
plt.text(0.01, 1.02, f"base value = {base_prob:.3f}", transform=ax.transAxes, fontsize=10)
|
226 |
-
|
227 |
-
# Plot k-mers with controlled spacing
|
228 |
-
y_spacing = 0.9 / max(len(display_kmers), 1)
|
229 |
-
y_position = 0.95
|
230 |
-
|
231 |
-
for pos, kmer, impact in display_kmers:
|
232 |
-
pre_sequence = sequence[max(0, pos-20):pos]
|
233 |
-
post_sequence = sequence[pos+len(kmer):min(pos+len(kmer)+20, len(sequence))]
|
234 |
-
|
235 |
-
# Add ellipsis if truncated
|
236 |
-
pre_ellipsis = "..." if pos > 20 else ""
|
237 |
-
post_ellipsis = "..." if pos+len(kmer)+20 < len(sequence) else ""
|
238 |
-
|
239 |
-
# Choose color based on impact
|
240 |
-
color = '#ffcccb' if impact > 0 else '#cce0ff'
|
241 |
-
arrow = '↑' if impact > 0 else '↓'
|
242 |
-
|
243 |
-
# Draw text elements
|
244 |
-
plt.text(0.01, y_position, f"{pre_ellipsis}{pre_sequence}", fontsize=9)
|
245 |
-
plt.text(0.01 + len(f"{pre_ellipsis}{pre_sequence}")/50, y_position,
|
246 |
-
kmer, fontsize=9, bbox=dict(facecolor=color, alpha=0.3, pad=1))
|
247 |
-
plt.text(0.01 + (len(f"{pre_ellipsis}{pre_sequence}") + len(kmer))/50,
|
248 |
-
y_position, f"{post_sequence}{post_ellipsis}", fontsize=9)
|
249 |
-
|
250 |
-
# Add impact value
|
251 |
-
plt.text(0.8, y_position, f"{arrow} {impact:+.3f}", fontsize=9)
|
252 |
-
|
253 |
-
y_position -= y_spacing
|
254 |
-
|
255 |
-
plt.axis('off')
|
256 |
-
|
257 |
-
# Adjust layout
|
258 |
-
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
|
259 |
return fig
|
260 |
|
261 |
-
|
262 |
###############################################################################
|
263 |
-
#
|
264 |
###############################################################################
|
265 |
|
266 |
def fig_to_image(fig):
|
267 |
"""Convert a Matplotlib figure to a PIL Image."""
|
|
|
268 |
buf = io.BytesIO()
|
269 |
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
|
270 |
buf.seek(0)
|
@@ -272,12 +242,11 @@ def fig_to_image(fig):
|
|
272 |
plt.close(fig)
|
273 |
return img
|
274 |
|
275 |
-
|
276 |
###############################################################################
|
277 |
-
#
|
278 |
###############################################################################
|
279 |
|
280 |
-
def predict(file_obj, top_kmers=10, fasta_text=""):
|
281 |
"""Main prediction function for Gradio interface."""
|
282 |
# Handle input
|
283 |
if fasta_text.strip():
|
@@ -302,7 +271,6 @@ def predict(file_obj, top_kmers=10, fasta_text=""):
|
|
302 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
303 |
try:
|
304 |
model = VirusClassifier(256).to(device)
|
305 |
-
# Remove 'weights_only=True' if it causes errors; it's not a standard argument.
|
306 |
model.load_state_dict(torch.load('model.pt', map_location=device))
|
307 |
scaler = joblib.load('scaler.pkl')
|
308 |
except Exception as e:
|
@@ -321,31 +289,34 @@ def predict(file_obj, top_kmers=10, fasta_text=""):
|
|
321 |
f"Sequence: {header}",
|
322 |
f"Prediction: {'Human' if prob_human > 0.5 else 'Non-human'} Origin",
|
323 |
f"Confidence: {max(prob_human, 1 - prob_human):.3f}",
|
324 |
-
f"Human Probability: {prob_human:.3f}"
|
325 |
-
"\nTop Contributing k-mers:"
|
326 |
]
|
327 |
|
328 |
-
# Create k-mer
|
329 |
kmers = [''.join(p) for p in product("ACGT", repeat=4)]
|
330 |
|
331 |
-
# 1)
|
332 |
-
|
333 |
-
importance_img = fig_to_image(
|
334 |
-
|
335 |
-
# 2) SHAP-style textual sequence impact
|
336 |
-
sequence_plot = visualize_sequence_impacts(seq, kmers, shap_values, prob_human)
|
337 |
-
sequence_img = fig_to_image(sequence_plot)
|
338 |
|
339 |
-
#
|
340 |
shap_means = compute_positionwise_scores(seq, shap_values, k=4)
|
341 |
-
heatmap_fig = plot_linear_heatmap(shap_means)
|
342 |
heatmap_img = fig_to_image(heatmap_fig)
|
343 |
|
344 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
346 |
|
347 |
###############################################################################
|
348 |
-
#
|
349 |
###############################################################################
|
350 |
|
351 |
css = """
|
@@ -379,31 +350,34 @@ with gr.Blocks(css=css) as iface:
|
|
379 |
step=1,
|
380 |
label="Number of top k-mers to display"
|
381 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
submit_btn = gr.Button("Analyze Sequence", variant="primary")
|
383 |
|
384 |
with gr.Column(scale=2):
|
385 |
-
|
386 |
-
kmer_plot = gr.Image(label="
|
387 |
-
|
388 |
-
|
389 |
|
390 |
submit_btn.click(
|
391 |
predict,
|
392 |
-
inputs=[file_input, top_k, text_input],
|
393 |
-
outputs=[
|
394 |
)
|
395 |
|
396 |
gr.Markdown("""
|
397 |
### Visualization Guide
|
398 |
-
- **
|
399 |
-
- **
|
400 |
-
- Red highlights = pushing toward human origin
|
401 |
-
- Blue highlights = pushing toward non-human origin
|
402 |
-
- Arrows (↑/↓) show impact direction
|
403 |
-
- Values show impact magnitude
|
404 |
-
- **Genome Heatmap**: Per-base SHAP values across the entire sequence
|
405 |
- Red = push toward human
|
406 |
- Blue = push toward non-human
|
|
|
407 |
""")
|
408 |
|
409 |
if __name__ == "__main__":
|
|
|
96 |
shap_values = []
|
97 |
x_zeroed = x_tensor.clone()
|
98 |
for i in range(x_tensor.shape[1]):
|
99 |
+
original_value = x_zeroed[0, i].item()
|
100 |
x_zeroed[0, i] = 0.0
|
101 |
output = model(x_zeroed)
|
102 |
probs = torch.softmax(output, dim=1)
|
103 |
prob = probs[0, 1].item()
|
104 |
+
impact = baseline_prob - prob
|
105 |
shap_values.append(impact)
|
106 |
+
x_zeroed[0, i] = original_value # restore
|
|
|
107 |
return np.array(shap_values), baseline_prob
|
108 |
|
109 |
|
110 |
###############################################################################
|
111 |
+
# 4. PER-BASE SHAP AGGREGATION
|
112 |
###############################################################################
|
113 |
|
114 |
def compute_positionwise_scores(sequence, shap_values, k=4):
|
|
|
121 |
kmer_dict = {km: i for i, km in enumerate(kmers)}
|
122 |
|
123 |
seq_len = len(sequence)
|
|
|
|
|
124 |
shap_sums = np.zeros(seq_len, dtype=np.float32)
|
125 |
coverage = np.zeros(seq_len, dtype=np.float32)
|
126 |
|
|
|
127 |
for i in range(seq_len - k + 1):
|
128 |
kmer = sequence[i:i+k]
|
129 |
if kmer in kmer_dict:
|
130 |
+
val = shap_values[kmer_dict[kmer]]
|
131 |
+
shap_sums[i : i + k] += val
|
|
|
|
|
132 |
coverage[i : i + k] += 1
|
133 |
|
|
|
134 |
with np.errstate(divide='ignore', invalid='ignore'):
|
135 |
shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
|
136 |
|
137 |
return shap_means
|
138 |
|
139 |
+
|
140 |
+
###############################################################################
|
141 |
+
# 5. HEATMAP PLOTS
|
142 |
+
###############################################################################
|
143 |
+
|
144 |
+
def plot_linear_heatmap(shap_means, title="Per-base SHAP Heatmap"):
|
145 |
"""
|
146 |
Plots a 1D heatmap of per-base SHAP contributions.
|
147 |
Negative = push toward Non-Human, Positive = push toward Human.
|
148 |
"""
|
149 |
+
heatmap_data = shap_means.reshape(1, -1) # shape (1, seq_len)
|
|
|
|
|
150 |
fig, ax = plt.subplots(figsize=(12, 2))
|
151 |
|
|
|
152 |
cax = ax.imshow(heatmap_data, aspect='auto', cmap='RdBu_r')
|
153 |
+
cbar = plt.colorbar(cax, orientation='horizontal', pad=0.2)
|
154 |
+
cbar.set_label('SHAP Contribution')
|
155 |
+
|
156 |
+
ax.set_yticks([])
|
157 |
+
ax.set_xlabel('Position in Sequence')
|
158 |
+
ax.set_title(title)
|
159 |
+
plt.tight_layout()
|
160 |
+
return fig
|
161 |
+
|
162 |
+
def get_top_signal_region(shap_means, window_size=500):
|
163 |
+
"""
|
164 |
+
Find the window of length `window_size` that has the highest
|
165 |
+
sum of absolute SHAP values. Returns (start_index, end_index).
|
166 |
+
"""
|
167 |
+
seq_len = len(shap_means)
|
168 |
+
if window_size >= seq_len:
|
169 |
+
return 0, seq_len # entire sequence if window too large
|
170 |
+
|
171 |
+
abs_values = np.abs(shap_means)
|
172 |
+
max_sum = -1
|
173 |
+
max_start = 0
|
174 |
+
|
175 |
+
# Slide a window over shap_means
|
176 |
+
current_sum = np.sum(abs_values[:window_size])
|
177 |
+
max_sum = current_sum
|
178 |
+
for start in range(1, seq_len - window_size + 1):
|
179 |
+
# Remove the leftmost base, add the new rightmost base
|
180 |
+
current_sum = current_sum - abs_values[start-1] + abs_values[start + window_size - 1]
|
181 |
+
if current_sum > max_sum:
|
182 |
+
max_sum = current_sum
|
183 |
+
max_start = start
|
184 |
+
|
185 |
+
return max_start, max_start + window_size
|
186 |
+
|
187 |
+
def plot_zoomed_heatmap(shap_means, window_size=500, title="Zoomed SHAP Region"):
|
188 |
+
"""
|
189 |
+
Finds the region with the largest absolute SHAP sum in a fixed window,
|
190 |
+
then plots a 1D heatmap of just that sub-region.
|
191 |
+
"""
|
192 |
+
start, end = get_top_signal_region(shap_means, window_size)
|
193 |
+
sub_means = shap_means[start:end].reshape(1, -1)
|
194 |
|
195 |
+
fig, ax = plt.subplots(figsize=(12, 2))
|
196 |
+
cax = ax.imshow(sub_means, aspect='auto', cmap='RdBu_r')
|
197 |
cbar = plt.colorbar(cax, orientation='horizontal', pad=0.2)
|
198 |
cbar.set_label('SHAP Contribution')
|
199 |
|
200 |
+
ax.set_yticks([])
|
201 |
+
ax.set_xlabel(f'Position in Sequence (zoomed in {start} - {end})')
|
202 |
+
ax.set_title(title)
|
203 |
|
204 |
plt.tight_layout()
|
205 |
return fig
|
206 |
|
207 |
|
208 |
###############################################################################
|
209 |
+
# 6. OTHER PLOT: TOP-K K-MER BAR PLOT
|
210 |
###############################################################################
|
211 |
|
212 |
def create_importance_bar_plot(shap_values, kmers, top_k=10):
|
213 |
"""Create a bar plot of the most important k-mers."""
|
214 |
plt.rcParams.update({'font.size': 10})
|
215 |
+
fig = plt.figure(figsize=(10, 5))
|
216 |
|
217 |
# Sort by absolute importance
|
218 |
indices = np.argsort(np.abs(shap_values))[-top_k:]
|
|
|
225 |
plt.yticks(range(len(values)), features)
|
226 |
plt.xlabel('SHAP value (impact on model output)')
|
227 |
plt.title(f'Top {top_k} Most Influential k-mers')
|
228 |
+
plt.gca().invert_yaxis()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
return fig
|
230 |
|
|
|
231 |
###############################################################################
|
232 |
+
# 7. HELPER FUNCTION: FIG TO IMAGE
|
233 |
###############################################################################
|
234 |
|
235 |
def fig_to_image(fig):
|
236 |
"""Convert a Matplotlib figure to a PIL Image."""
|
237 |
+
import io
|
238 |
buf = io.BytesIO()
|
239 |
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
|
240 |
buf.seek(0)
|
|
|
242 |
plt.close(fig)
|
243 |
return img
|
244 |
|
|
|
245 |
###############################################################################
|
246 |
+
# 8. MAIN PREDICTION FUNCTION
|
247 |
###############################################################################
|
248 |
|
249 |
+
def predict(file_obj, top_kmers=10, fasta_text="", zoom_window=500):
|
250 |
"""Main prediction function for Gradio interface."""
|
251 |
# Handle input
|
252 |
if fasta_text.strip():
|
|
|
271 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
272 |
try:
|
273 |
model = VirusClassifier(256).to(device)
|
|
|
274 |
model.load_state_dict(torch.load('model.pt', map_location=device))
|
275 |
scaler = joblib.load('scaler.pkl')
|
276 |
except Exception as e:
|
|
|
289 |
f"Sequence: {header}",
|
290 |
f"Prediction: {'Human' if prob_human > 0.5 else 'Non-human'} Origin",
|
291 |
f"Confidence: {max(prob_human, 1 - prob_human):.3f}",
|
292 |
+
f"Human Probability: {prob_human:.3f}"
|
|
|
293 |
]
|
294 |
|
295 |
+
# Create k-mer list (4-mers in lexicographic order)
|
296 |
kmers = [''.join(p) for p in product("ACGT", repeat=4)]
|
297 |
|
298 |
+
# 1) Top-k k-mer bar plot
|
299 |
+
importance_fig = create_importance_bar_plot(shap_values, kmers, top_kmers)
|
300 |
+
importance_img = fig_to_image(importance_fig)
|
|
|
|
|
|
|
|
|
301 |
|
302 |
+
# 2) Full-genome per-base SHAP heatmap
|
303 |
shap_means = compute_positionwise_scores(seq, shap_values, k=4)
|
304 |
+
heatmap_fig = plot_linear_heatmap(shap_means, title="Genome-wide Per-base SHAP")
|
305 |
heatmap_img = fig_to_image(heatmap_fig)
|
306 |
|
307 |
+
# 3) Zoomed region (optional, using the largest absolute SHAP region)
|
308 |
+
if zoom_window > 0:
|
309 |
+
zoom_fig = plot_zoomed_heatmap(shap_means, window_size=zoom_window,
|
310 |
+
title=f"Top SHAP Region (window={zoom_window})")
|
311 |
+
zoom_img = fig_to_image(zoom_fig)
|
312 |
+
else:
|
313 |
+
zoom_img = None
|
314 |
+
|
315 |
+
return "\n".join(results), importance_img, heatmap_img, zoom_img
|
316 |
|
317 |
|
318 |
###############################################################################
|
319 |
+
# 9. BUILD GRADIO INTERFACE
|
320 |
###############################################################################
|
321 |
|
322 |
css = """
|
|
|
350 |
step=1,
|
351 |
label="Number of top k-mers to display"
|
352 |
)
|
353 |
+
zoom_window = gr.Slider(
|
354 |
+
minimum=0,
|
355 |
+
maximum=5000,
|
356 |
+
value=500,
|
357 |
+
step=100,
|
358 |
+
label="Zoom Window Size (0 to disable zoom plot)"
|
359 |
+
)
|
360 |
submit_btn = gr.Button("Analyze Sequence", variant="primary")
|
361 |
|
362 |
with gr.Column(scale=2):
|
363 |
+
results_box = gr.Textbox(label="Analysis Results", lines=5)
|
364 |
+
kmer_plot = gr.Image(label="Top k-mer SHAP")
|
365 |
+
full_heatmap = gr.Image(label="Genome-wide SHAP Heatmap")
|
366 |
+
zoomed_heatmap = gr.Image(label="Zoomed SHAP Region (largest signal)")
|
367 |
|
368 |
submit_btn.click(
|
369 |
predict,
|
370 |
+
inputs=[file_input, top_k, text_input, zoom_window],
|
371 |
+
outputs=[results_box, kmer_plot, full_heatmap, zoomed_heatmap]
|
372 |
)
|
373 |
|
374 |
gr.Markdown("""
|
375 |
### Visualization Guide
|
376 |
+
- **Top k-mer SHAP**: Shows the most influential k-mers and their SHAP values.
|
377 |
+
- **Genome-wide SHAP Heatmap**: Per-base SHAP values across the entire sequence.
|
|
|
|
|
|
|
|
|
|
|
378 |
- Red = push toward human
|
379 |
- Blue = push toward non-human
|
380 |
+
- **Zoomed SHAP Region**: Shows the subregion of length 'Zoom Window Size' that has the highest absolute SHAP sum.
|
381 |
""")
|
382 |
|
383 |
if __name__ == "__main__":
|